

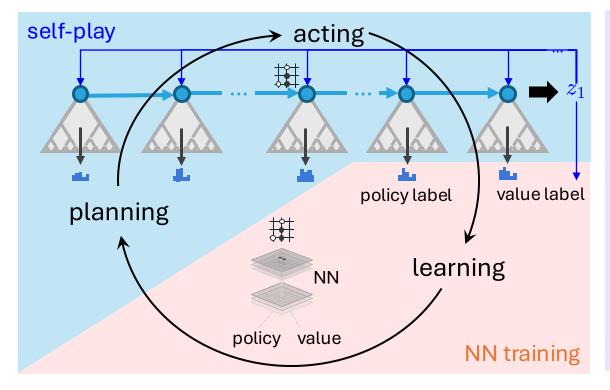
Uncertainty-Guided Exploration for Efficient AlphaZero Training

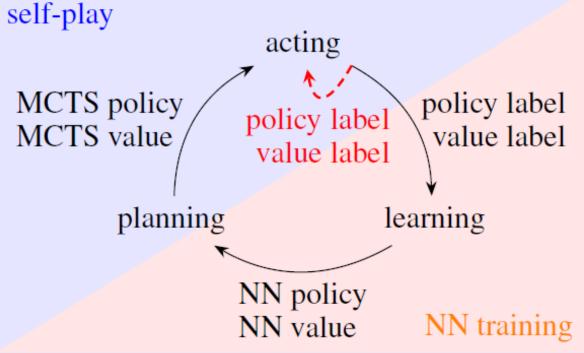
Scott Cheng¹, Meng-Yu Tsai², Ding-Yong Hong³, Mahmut Taylan Kandemir¹

- ¹ The Pennsylvania State University, USA
- ² Independent
- ³ Academia Sinica, Taiwan

Background: AlphaZero

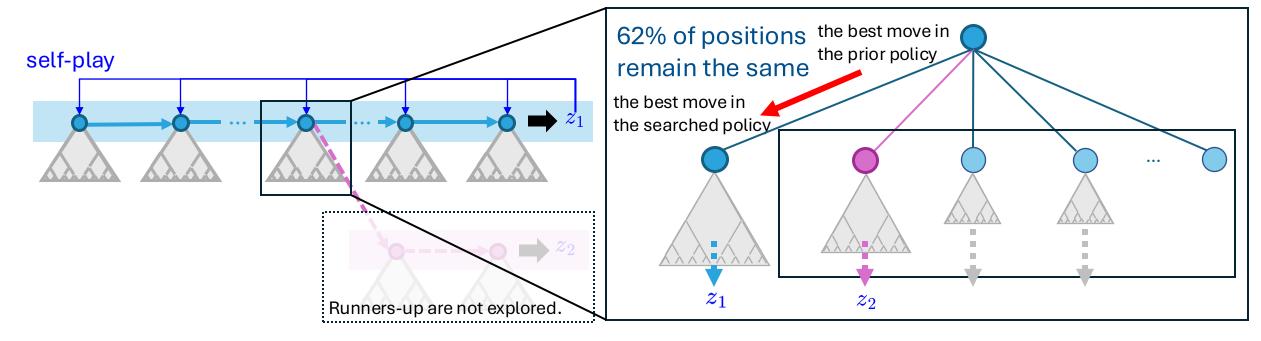
Many recent breakthroughs in artificial intelligence have been driven by the AlphaZero algorithm, which consists of self-play and NN training:





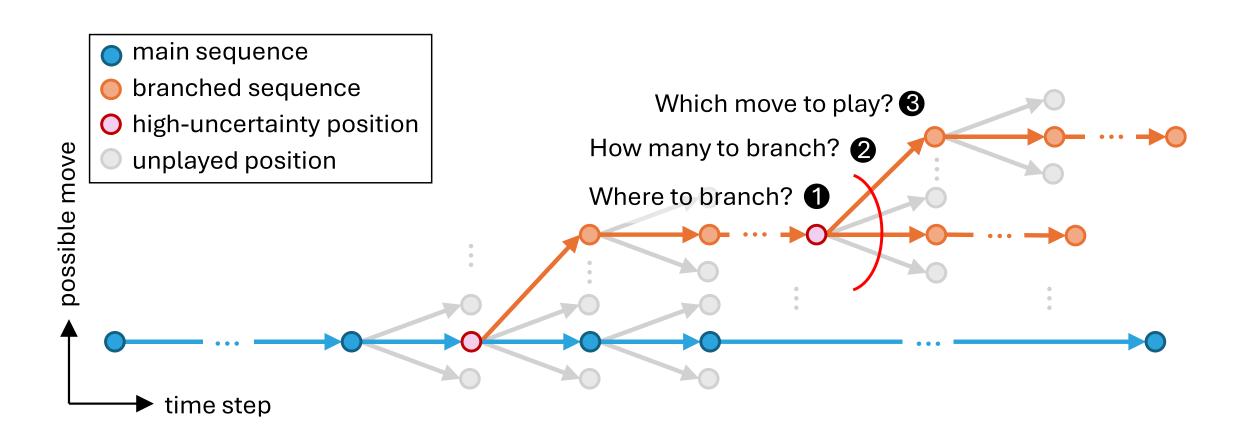
AlphaZero's self-play process remains inefficient

(1) Value labels have high variance, as (2) A few positions exhibit high-uncertainty, they are derived from a single result. but these positions are not further explored.



(3) When deeper search changes the best move, 79% of the new best moves come from the top-3 runners-up.

Uncertainty-Guided Exploration during Self-play



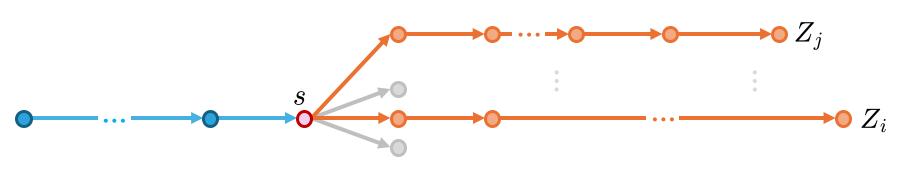
Label Change Rate (LCR)

Game result: $Z \sim \operatorname{Bernoulli}(w)$ Game plays: $Z_1, \ldots, Z_n \stackrel{\text{i.i.d.}}{\sim} Z$

Uncertainty metric: $\theta = LCR(s)$

For any independent plays $i \neq j$,

$$LCR(s) := Pr(Z_i \neq Z_j) = 2w(1 - w)$$



$$\hat{ heta} = 2v(1-v) \,$$
 for MCTS value $v \in [0,1]$

Bayesian Inference

Bayesian view: model the LCR θ as a random variable.

Label change: $X = \mathbf{1}_{Z_i \neq Z_j}$

Observed data: $D = \{X_1, X_2, \dots, X_m\}$

where $X_i \sim \mathrm{Bernoulli}(\theta)$

Prior LCR:

$$\mathbb{E}[\theta] = \frac{\alpha}{\alpha + \beta}$$

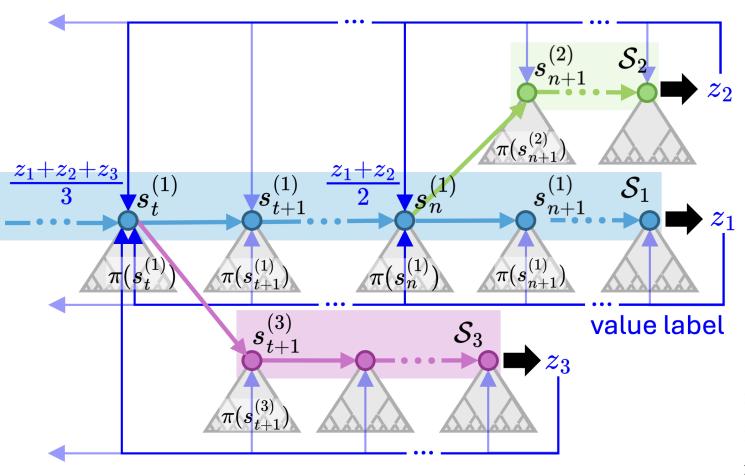
where $\theta \sim \mathrm{Beta}(\alpha, \beta)$

Posterior LCR:

$$\mathbb{E}[\theta \mid D] = \frac{\alpha + s}{\alpha + \beta + m}$$

where $\; \theta \mid D \sim \mathrm{Beta}(\alpha + s, \beta + m - s) \;$ with s observed result changes

Uncertainty-Guided Branching



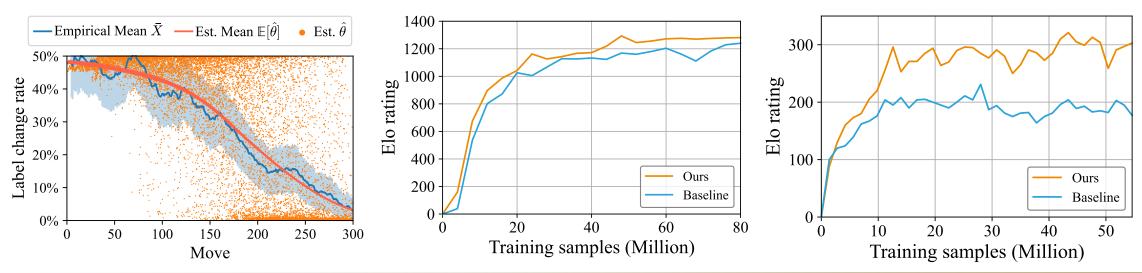
 $\operatorname{Var}[\bar{Z}] = w(1-w)/n$

Algorithm 1: Uncertainty-Guided Branching **Input:** G number of states to collect **Output:** $\mathcal{G} = \{(\text{state, policy label, value label})\}$ 1 $\mathcal{G} \leftarrow \emptyset$ 2 while $|\mathcal{G}| < G$ do $(s,a) \leftarrow \text{initial state and action}$ for $i \leftarrow 1$ to V do $\{(s', \pi(s'), z_i) \mid s' \in \mathcal{S}_i\} \leftarrow$ play episode from (s, a)Compute LCR and sampling weights u (defined in Equation 4) $s \sim Y(u)$ (defined in Equation 5) $a \sim \pi(\cdot \mid s)$ while (s, a) has been played do **10** $s \leftarrow \text{preceding state of } s$ 11 $a \sim \pi(\cdot \mid s)$ 12 $\mathcal{S} := igcup_{i=1}^V \, \mathcal{S}_i$ $\mathcal{G} \leftarrow \mathcal{G} \cup \left\{ (s', \pi(s'), \frac{\sum_{i: s' \in \mathcal{S}_i} z_i}{|\{i: s' \in \mathcal{S}_i\}|}) \,\middle|\, s' \in \mathcal{S} \right\}$ 15 return \mathcal{G}

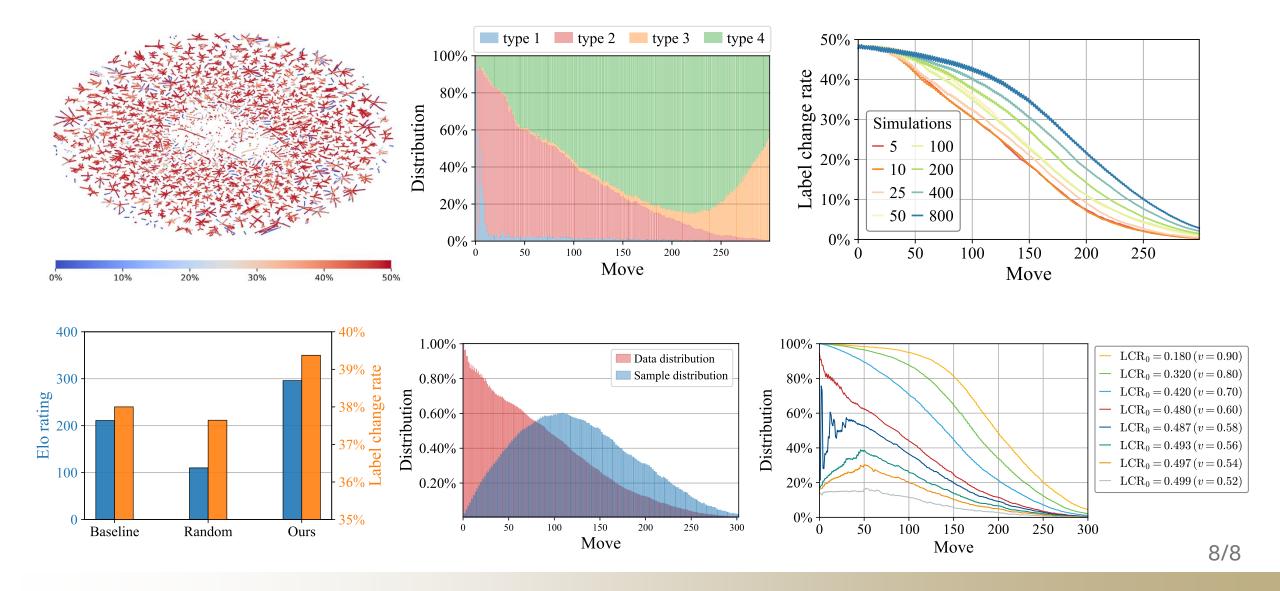
Evaluation

- 1. End-to-end training: improves sample efficiency up to 58.5% in 9x9 Go and 47.3% in 19x19 Go.
- 2. LCR uncertainty estimator closely matches the empirical results with an average RMSE of 0.02.
- 3. Our design space exploration shows that V=10 achieves the best balance for exploration within and between games.

and more...



For more details... Please check our paper!



Thank you

Acknowledgements to:

- DOE grant and NSF grants*
- National Science and Technology Council of Taiwan
- Taiwan National Center for High-performance Computing (NCHC)
- Anonymous reviewers for their valuable comments

^{*} The opinions expressed in this paper are those of the authors and not necessarily the views of the NSF or the DOE.

