Fast constrained sampling in pre-trained diffusion models

Alexandros Graikos¹, Nebojsa Jojic², Dimitris Samaras¹

Task: Using the Stable Diffusion text-to-image model, inpaint the missing half



Task: Using the Stable Diffusion text-to-image model, inpaint the missing half

Task:

Using the Stable Diffusion text-to-image model, inpaint the missing half

Outline of algorithm for sampling under constraints

```
1: Input: Diffusion model \hat{x}_0(x_t), schedule \alpha_i, \beta_i, step size s,
      constraint C(x_0, y), learning rate \lambda, optimization steps K.
 2: x_T \sim N(0, I)
 3: for t = T, T - s, T - 2s, ..., s do
       // Optimize latent for constraint
         for i = 1, 2, ..., K do
           // Compute error
        // non-linear: gradient descent | linear: closed-form
            \boldsymbol{e} = \nabla_{\hat{\boldsymbol{x}}_0} C(\hat{\boldsymbol{x}}_0, \boldsymbol{y}) \text{ or } \boldsymbol{e} = \operatorname{Solver}_C(\hat{\boldsymbol{x}}_0, \boldsymbol{y})
           // Compute update direction and perform step
      e_t = \mathcal{F}(J, e)
       oldsymbol{x}_t = oldsymbol{x}_t - \lambda oldsymbol{e}_t
         end for
         // Run diffusion step
14: z_t \sim N(0, I)
15: \epsilon_t = \frac{1}{\sqrt{1-\alpha_{t-s}}} \boldsymbol{x}_t - \frac{\sqrt{\alpha_{t-s}}}{\sqrt{1-\alpha_{t-s}}} \hat{\boldsymbol{x}}_0(\boldsymbol{x}_t)
      \boldsymbol{x}_{t-s} = \sqrt{\alpha_{t-s}} \hat{\boldsymbol{x}}_0(\boldsymbol{x}_t) + \sqrt{1 - \alpha_{t-s} - \beta_{t-s}^2} \boldsymbol{\epsilon}_t + \beta_{t-s} \boldsymbol{z}_t
17: end for
18: Return: x_0
```

Task:

Using the Stable Diffusion text-to-image model, inpaint the missing half

Outline of algorithm for sampling under constraints

Solution:

1 Given a diffusion model $\hat{x}_0(x_t)$ we compute how well the current prediction fits the constraint

```
1: Input: Diffusion model \hat{x}_0(x_t), schedule \alpha_i, \beta_i, step size s,
      constraint C(x_0, y), learning rate \lambda, optimization steps K.
 2: x_T \sim N(0, I)
 3: for t = T, T - s, T - 2s, ..., s do
        // Optimize latent for constraint
         for i = 1, 2, ..., K do
            // Compute error
          // non-linear: gradient descent | linear: closed-form
            \boldsymbol{e} = \nabla_{\hat{\boldsymbol{x}}_0} C(\hat{\boldsymbol{x}}_0, \boldsymbol{y}) \text{ or } \boldsymbol{e} = \text{Solver}_C(\hat{\boldsymbol{x}}_0, \boldsymbol{y})
           // Compute update direction and perform step
10: e_t = \mathcal{F}(J, e)
      oldsymbol{x}_t = oldsymbol{x}_t - \lambda oldsymbol{e}_t
         end for
12:
         // Run diffusion step
14: z_t \sim N(0, I)
15: \boldsymbol{\epsilon}_t = \frac{1}{\sqrt{1-lpha_{t-s}}} \boldsymbol{x}_t - \frac{\sqrt{lpha_{t-s}}}{\sqrt{1-lpha_{t-s}}} \hat{\boldsymbol{x}}_0(\boldsymbol{x}_t)
      oldsymbol{x}_{t-s} = \sqrt{lpha_{t-s}} \hat{oldsymbol{x}}_0(oldsymbol{x}_t) + \sqrt{1 - lpha_{t-s} - eta_{t-s}^2} oldsymbol{\epsilon}_t + eta_{t-s} oldsymbol{z}_t
17: end for
18: Return: x_0
```

Task:

Using the Stable Diffusion text-to-image model, inpaint the missing half

Outline of algorithm for sampling under constraints

Solution:

- 1 Given a diffusion model $\hat{m{x}}_0(m{x}_t)$ we compute how well the current prediction fits the constraint
- 2 We transform the error from the output space (e: clean image) to the input space (e_t : noisy image) using the denoiser Jacobian J

```
1: Input: Diffusion model \hat{x}_0(x_t), schedule \alpha_i, \beta_i, step size s,
      constraint C(x_0, y), learning rate \lambda, optimization steps K.
 2: x_T \sim N(0, I)
 3: for t = T, T - s, T - 2s, ..., s do
        // Optimize latent for constraint
         for i = 1, 2, ..., K do
            // Compute error
          // non-linear: gradient descent | linear: closed-form
            e = \nabla_{\hat{\boldsymbol{x}}_0} C(\hat{\boldsymbol{x}}_0, \boldsymbol{y}) \text{ or } e = \text{Solver}_C(\hat{\boldsymbol{x}}_0, \boldsymbol{y})
           // Compute update direction and perform step
10: e_t = \mathcal{F}(J, e)
      oldsymbol{x}_t = oldsymbol{x}_t - \lambda oldsymbol{e}_t
         end for
12:
         // Run diffusion step
14: z_t \sim N(0, I)
15: \boldsymbol{\epsilon}_t = \frac{1}{\sqrt{1-lpha_{t-s}}} \boldsymbol{x}_t - \frac{\sqrt{lpha_{t-s}}}{\sqrt{1-lpha_{t-s}}} \hat{\boldsymbol{x}}_0(\boldsymbol{x}_t)
      oldsymbol{x}_{t-s} = \sqrt{lpha_{t-s}} \hat{oldsymbol{x}}_0(oldsymbol{x}_t) + \sqrt{1 - lpha_{t-s} - eta_{t-s}^2} oldsymbol{\epsilon}_t + eta_{t-s} oldsymbol{z}_t
17: end for
18: Return: x_0
```

Task:

Using the Stable Diffusion text-to-image model, inpaint the missing half

Outline of algorithm for sampling under constraints

Solution:

- 1 Given a diffusion model $\hat{x}_0(x_t)$ we compute how well the current prediction fits the constraint
- 2 We transform the error from the output space (e: clean image) to the input space (e_t : noisy image) using the denoiser Jacobian J
- 3 We update the diffusion latent with the computed noisy image update direction

```
1: Input: Diffusion model \hat{x}_0(x_t), schedule \alpha_i, \beta_i, step size s,
     constraint C(x_0, y), learning rate \lambda, optimization steps K.
 2: x_T \sim N(0, I)
 3: for t = T, T - s, T - 2s, ..., s do
       // Optimize latent for constraint
         for i = 1, 2, ..., K do
            // Compute error
          // non-linear: gradient descent | linear: closed-form
            e = \nabla_{\hat{\boldsymbol{x}}_0} C(\hat{\boldsymbol{x}}_0, \boldsymbol{y}) \text{ or } e = \text{Solver}_C(\hat{\boldsymbol{x}}_0, \boldsymbol{y})
           // Compute update direction and perform step
10: e_t = \mathcal{F}(J, e)
      oldsymbol{x}_t = oldsymbol{x}_t - \lambda oldsymbol{e}_t
         end for
12:
         // Run diffusion step
14: z_t \sim N(0, I)
15: \epsilon_t = \frac{1}{\sqrt{1-\alpha_{t-s}}} \boldsymbol{x}_t - \frac{\sqrt{\alpha_{t-s}}}{\sqrt{1-\alpha_{t-s}}} \hat{\boldsymbol{x}}_0(\boldsymbol{x}_t)
      oldsymbol{x}_{t-s} = \sqrt{lpha_{t-s}} \hat{oldsymbol{x}}_0(oldsymbol{x}_t) + \sqrt{1-lpha_{t-s}-eta_{t-s}^2} oldsymbol{\epsilon}_t + eta_{t-s} oldsymbol{z}_t
17: end for
18: Return: x_0
```

2 We transform the error from the output space (e: clean image) to the input space (e_t : noisy image) using the denoiser Jacobian J

```
// Compute update direction and perform step e_t = \mathcal{F}(\boldsymbol{J}, \boldsymbol{e}) \boldsymbol{x}_t = \boldsymbol{x}_t - \lambda \boldsymbol{e}_t
```

2 We transform the error from the output space (e: clean image) to the input space (e_t : noisy image) using the denoiser Jacobian J

// Compute update direction and perform step $e_t = \mathcal{F}(\boldsymbol{J}, \boldsymbol{e})$ $\boldsymbol{x}_t = \boldsymbol{x}_t - \lambda \boldsymbol{e}_t$

$$oldsymbol{x}_t' = oldsymbol{x}_t - \lambda oldsymbol{I} oldsymbol{e}$$

✓ Cheap:

Constraint enforced locally

X Inaccurate:

Fails at capturing long-range dependencies

MPGD [2] Time:18s Memory: 9GB

2 We transform the error from the output space (e: clean image) to the input space (e_t : noisy image) using the denoiser Jacobian J

// Compute update direction and perform step $e_t = \mathcal{F}(\boldsymbol{J}, \boldsymbol{e})$ $\boldsymbol{x}_t = \boldsymbol{x}_t - \lambda \boldsymbol{e}_t$

"Local" Descent

$$oldsymbol{x}_t' = oldsymbol{x}_t - \lambda oldsymbol{I} oldsymbol{e}$$

✓ Cheap:

Constraint enforced locally **X** Inaccurate:

Fails at capturing long-range dependencies

MPGD [2] Time:18s Memory: 9GB

Gradient Descent

$$\boldsymbol{x}_t' = \boldsymbol{x}_t - \lambda \boldsymbol{J}^T \boldsymbol{e}$$

X Expensive:

Backpropagation is slow & memory-heavy

✓ Accurate:

Constraint backpropagated through network — captures long-range effects

PSLD [1] Time: 8min Memory: 17GB

FreeDoM [3] Time: 1min Memory: 17GB

2 We transform the error from the output space (e: clean image) to the input space (e_t : noisy image) using the denoiser Jacobian J

// Compute update direction and perform step $e_t = \mathcal{F}(\boldsymbol{J}, \boldsymbol{e})$ $\boldsymbol{x}_t = \boldsymbol{x}_t - \lambda \boldsymbol{e}_t$

"Local" Descent

$$oldsymbol{x}_t' = oldsymbol{x}_t - \lambda oldsymbol{I} oldsymbol{e}$$

✓ Cheap:

Constraint enforced locally **X** Inaccurate:

Fails at capturing long-range dependencies

MPGD [2] Time:18s Memory: 9GB

Gradient Descent

$$\boldsymbol{x}_t' = \boldsymbol{x}_t - \lambda \boldsymbol{J}^T \boldsymbol{e}$$

X Expensive:

Backpropagation is slow & memory-heavy ✓ Accurate:

Constraint backpropagated through network — captures long-range effects

PSLD [1] Time: 8min Memory: 17GB

FreeDoM [3] Time: 1min Memory: 17GB

Inexact Newton (Ours)

$$oldsymbol{x}_t' = oldsymbol{x}_t - \lambda oldsymbol{J} oldsymbol{e}$$

✓ Cheap:

No backpropagation

✓ Accurate:

Captures long-range dependencies

Ours Time: 15s Memory: 9GB

Inexact Newton for constrained sampling

Why is this a Newton method?

- We need to solve the system: $oldsymbol{J} oldsymbol{e}_t = oldsymbol{e}$ Newton-Gauss (single-step): $oldsymbol{e}_t = oldsymbol{J}^{-1} oldsymbol{e}$
- To avoid computing J⁻¹ we can iteratively solve with inexact steps [5]. We propose the step

Inexact Newton (multiple steps): $oldsymbol{e}_t' = oldsymbol{e}_t - \lambda oldsymbol{J} oldsymbol{e}$

Inexact Newton for constrained sampling

Why is this a Newton method?

- We need to solve the system: $m{J}m{e}_t = m{e}$ Newton-Gauss (single-step): $m{e}_t = m{J}^{-1}m{e}$
- To avoid computing J⁻¹ we can iteratively solve with inexact steps [5]. We propose the step

Inexact Newton (multiple steps): $oldsymbol{e}_t' = oldsymbol{e}_t - \lambda oldsymbol{J} oldsymbol{e}$

Why is it cheaper than gradient descent?

The Jacobian-vector product can be computed with two forward passes.

$$oldsymbol{Je}pproxrac{\hat{oldsymbol{x}}_0(oldsymbol{x}_t+\deltaoldsymbol{e})-\hat{oldsymbol{x}}_0(oldsymbol{x}_t)}{\delta}$$

This is cheaper than backpropagation (gradient descent)

Inpaint (Free-form)				
Method	PSNR ↑	LPIPS ↓	FID ↓	Time
P2L ⁺ captions	21.99	0.229	32.82	$30 \mathrm{m}$
LDPS	21.54	0.332	46.72	$6 \mathrm{m}$
PSLD	20.92	0.251	40.57	8m
Ours	21.73	0.258	19.39	15s

	Super-res ($\times 8$)			
Method	PSNR ↑	$\mathrm{LPIPS}\downarrow$	$\mathrm{FID}\downarrow$	Time
P2L ⁺ captions	23.38	0.386	51.81	$30 \mathrm{m}$
LDPS	23.21	0.475	61.09	$6 \mathrm{m}$
PSLD	23.17	0.471	60.81	8m
Ours	24.26	0.455	60.99	$1 \mathrm{m}$
Ours ⁺ captions	24.95	0.405	44.74	$1 \mathrm{m}$

	Inpair	Inpaint (Free-form)			
Method	PSNR ↑	LPIPS \downarrow	FID ↓	Time	
P2L ⁺ captions	s 21.99	0.229	32.82	$30 \mathrm{m}$	
LDPS	21.54	0.332	46.72	$6 \mathrm{m}$	
PSLD	20.92	0.251	40.57	8m	
Ours	21.73	0.258	19.39	15s	

	Sup			
Method	PSNR ↑	LPIPS ↓	FID ↓	Time
P2L ⁺ captions	23.38	0.386	51.81	30m
LDPS	23.21	0.475	61.09	$6 \mathrm{m}$
PSLD	23.17	0.471	60.81	8m
Ours	24.26	0.455	60.99	$1 \mathrm{m}$
Ours ⁺ captions	24.95	0.405	44.74	$1 \mathrm{m}$

Inpainting: Better consistency between the given and missing regions (FID ↓)

	Inpaint (Free-form)			
Method	PSNR ↑	LPIPS \downarrow	FID ↓	Time
P2L ⁺ captions	21.99	0.229	32.82	$30 \mathrm{m}$
LDPS	21.54	0.332	46.72	$6 \mathrm{m}$
PSLD	20.92	0.251	40.57	8m
Ours	21.73	0.258	19.39	15s

	Sup			
Method	PSNR ↑	LPIPS ↓	FID ↓	Time
P2L ⁺ captions	23.38	0.386	51.81	30m
LDPS	23.21	0.475	61.09	$6 \mathrm{m}$
PSLD	23.17	0.471	60.81	$8 \mathrm{m}$
Ours	24.26	0.455	60.99	$1 \mathrm{m}$
Ours ⁺ captions	s 24.95	0.405	44.74	$1 \mathrm{m}$

- **Inpainting**: Better consistency between the given and missing regions (FID ↓)
- **Super-resolution**: Similar quality at a fraction of the inference time

	Inpaint (Box)			
Method	PSNR ↑	LPIPS \downarrow	FID ↓	Time
LDPS	17.52	0.42	76.32	$6 \mathrm{m}$
PSLD	17.30	0.38	74.02	$8 \mathrm{m}$
FreeDoM	16.18	0.42	55.68	$1 \mathrm{m}$
Ours $(K = 5, \lambda = 0.5)$	18.30	0.30	42.01	15s
Ours $(K = 2, \lambda = 0.5)$	18.01	0.39	68.75	7s
Ours $(K = 5, \lambda = 1.0)$	17.48	0.32	47.20	15s
SD-Inpaint	19.05	0.28	32.93	4s

	Inpaint (Box)				
Method	$\overline{\mathrm{PSNR}\uparrow}$	LPIPS \downarrow	FID ↓	Time	
LDPS	17.52	0.42	76.32	$6\mathrm{m}$	
PSLD	17.30	0.38	74.02	$8 \mathrm{m}$	
FreeDoM	16.18	0.42	55.68	$1 \mathrm{m}$	
Ours $(K = 5, \lambda = 0.5)$	18.30	0.30	42.01	15s	
Ours $(K = 2, \lambda = 0.5)$	18.01	0.39	68.75	7s	
Ours $(K = 5, \lambda = 1.0)$	17.48	0.32	47.20	15s	
SD-Inpaint	19.05	0.28	32.93	4s	

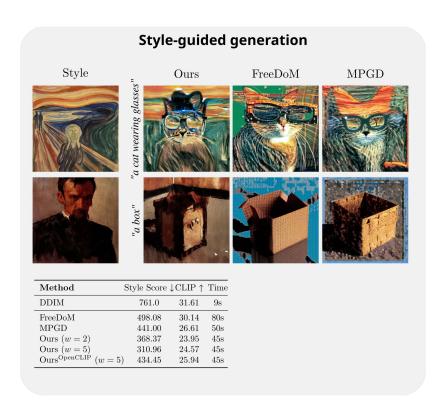
Box Inpainting: Other methods fail at long-range consistency



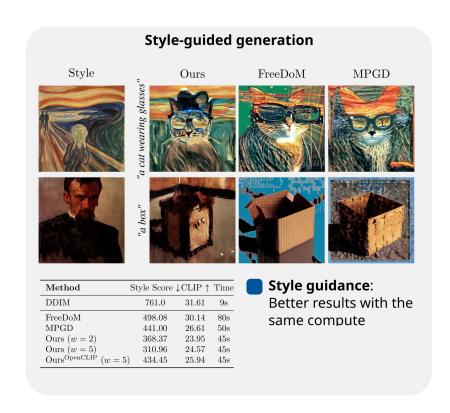
	Inp	Inpaint (Box)			
Method	$\overline{\mathrm{PSNR}\uparrow}$	LPIPS \downarrow	FID ↓	Time	
LDPS	17.52	0.42	76.32	$6\mathrm{m}$	
PSLD	17.30	0.38	74.02	$8 \mathrm{m}$	
FreeDoM	16.18	0.42	55.68	$1 \mathrm{m}$	
Ours $(K = 5, \lambda = 0.5)$	18.30	0.30	42.01	15s	
Ours $(K = 2, \lambda = 0.5)$	18.01	0.39	68.75	7s	
Ours $(K = 5, \lambda = 1.0)$	17.48	0.32	47.20	15s	
SD-Inpaint	19.05	0.28	32.93	4s	

- **Box Inpainting**: Other methods fail at long-range consistency
- Our results are the closest to full fine-tuning (SD-Inpaint)

Results - Non-linear constraints



Results - Non-linear constraints



Poster Session:

Thu 4 Dec 4:30 p.m. PST — 7:30 p.m. PST

Exhibit Hall C,D,E

GitHub:

arXiv:

- [1] Rout, Litu, et al. "Solving linear inverse problems provably via posterior sampling with latent diffusion models." NeurIPS 2023
- [2] He, Yutong, et al. "Manifold Preserving Guided Diffusion." ICLR 2024
- [3] Yu, Jiwen, et al. "Freedom: Training-free energy-guided conditional diffusion model." ICCV 2023
- [4] Chung, Hyungjin, et al. "Prompt-tuning Latent Diffusion Models for Inverse Problems." ICML 2024
- [5] Dembo, Ron S., Stanley C. Eisenstat, and Trond Steihaug. "Inexact newton methods." SIAM Journal on Numerical analysis 1982

Acknowledgements:

Part of this work was done during an internship at Microsoft Research Redmond. This research was also partially supported by NSF grants IIS-2123920, IIS-2212046.