

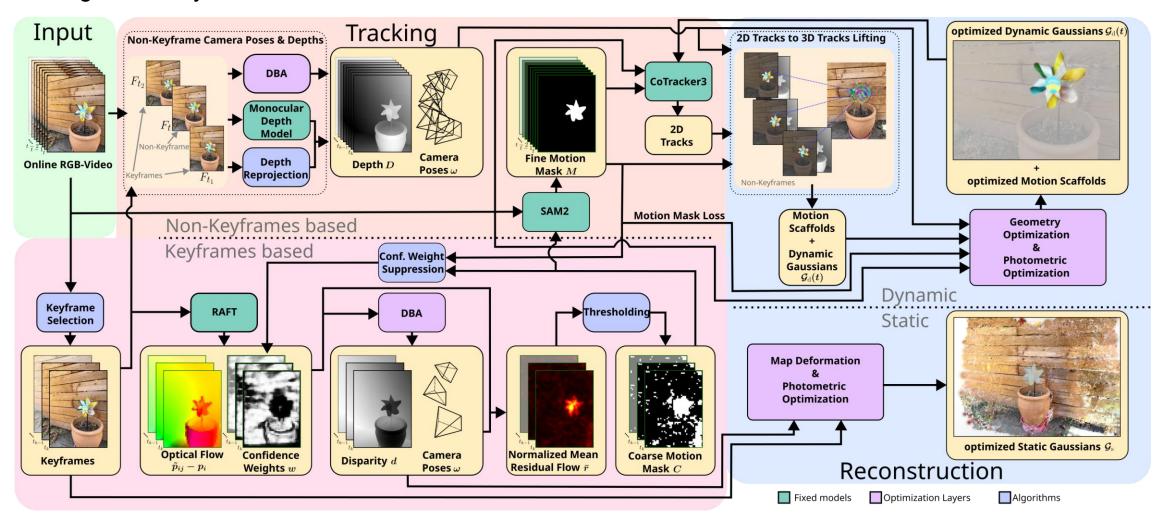
ProDyG: Progressive Dynamic Scene Reconstruction via Gaussian Splatting from Monocular Videos

Shi Chen¹, Erik Sandström², Sandro Lombardi, Siyuan Li¹, Martin R. Oswald³

¹ETH Zürich, ²Google, ³University of Amsterdam

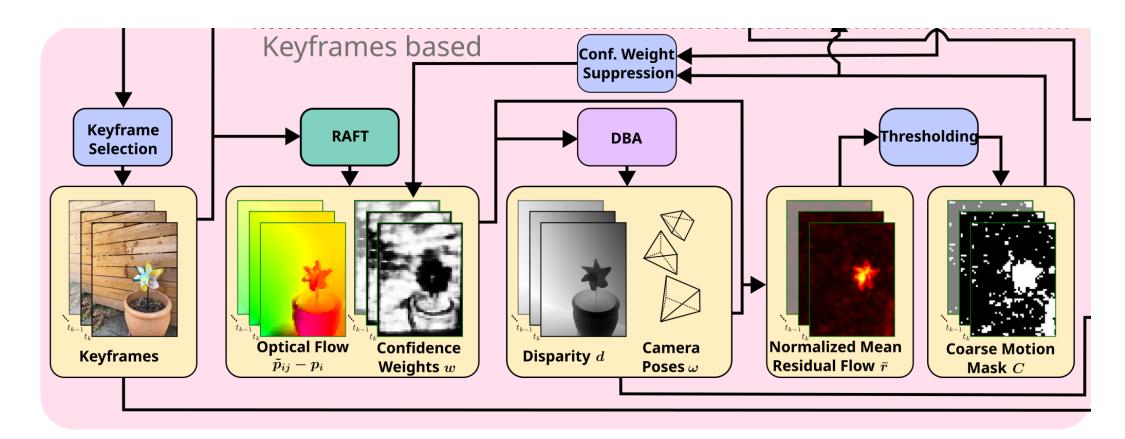
Motivation: What is needed for practical dynamic scene reconstruction?

- Monocular input
- Online operation
- Robust camera tracking against dynamic distractors
- **Expressive** scene representation
- Temporal consistency
- NVS of dynamic regions
- RGB-only

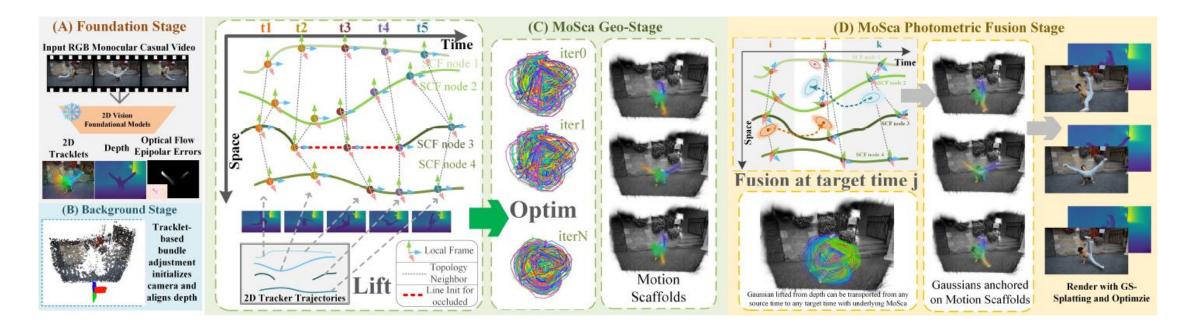

ProDyG ticks all the boxes!

- ✓ Monocular input
- ✓ Online operation
- √ Robust camera tracking against dynamic distractors
- **✓** Expressive scene representation
- √ Temporal consistency
- ✓ NVS of dynamic regions
- **✓** RGB-only

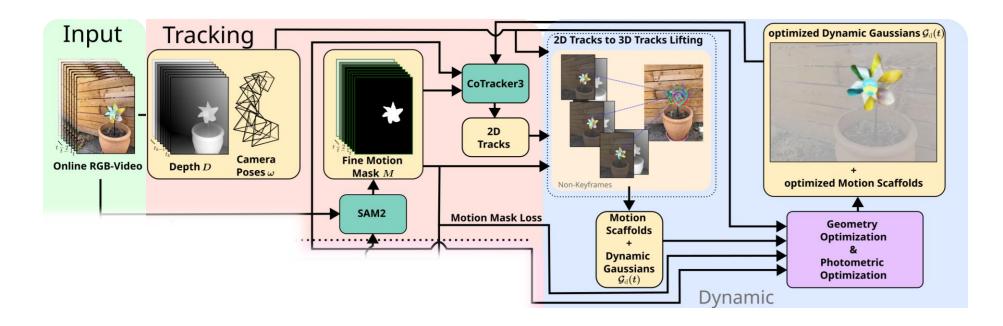
Method Overview


- Motion-Agnostic Online Camera Tracking
- Progressive Dynamic Scene Reconstruction

Motion-Agnostic Online Camera Tracking


- Operates over a factor graph
- Iteratively refine coarse motion mask based on residual flow = optical flow camera-induced flow
- Suppress confidence in potentially dynamic regions

Motion Scaffolds (MoSca) [Lei 2024]


- Low-parametric motion field representation
- Composed of nodes with time-dependent positions & rotations and edges representing topology
- Motion of dynamic Gaussians computed by interpolating MoSca node motion using Dual Quaternion Blending (DQB)

Progressive Construction of Motion Scaffolds

- We extend offline MoSca to online
 - Extend 2D tracks into new frames
 - Identify newly observed pixels
 - > Add new 2D tracks
 - ➤ Lift 2D tracks into 3D, and warp them backward in time using Motion Scaffolds
 - Geometry & photometric optimization

Method	Туре	Bonn RGB-D Dynamic Dataset [47]					TUM RGB-D Dataset [62]					
	31	Ball	Ball2	Pers	Pers2	Avg.	f3/ws	f3/wx	f3/wr	f3/whs	Avg.	
RGB-D Input												
ORB-SLAM2 [44]	S	6.5	23.0	6.9	7.9	11.1	40.8	72.2	80.5	72.3	66.45	
NICE-SLAM [90]	S	24.4	20.2	24.5	53.6	30.7	79.8	86.5	244.0	152.0	140.57	
ReFusion [48]	R	17.5	25.4	28.9	46.3	29.5	1.7	9.9	40.6	10.4	15.7	
DynaSLAM (N+G) [4]	R	3.0	2.9	6.1	7.8	5.0	0.6	1.5	3.5	2.5	2.03	
DG-SLAM [76]	R	3.7	4.1	4.5	6.9	4.8	0.6	1.6	4.3	-	-	
RoDyn-SLAM [19]	R	7.9	11.5	14.5	13.8	11.9	1.7	8.3	-	5.6	-	
DDN-SLAM (RGB-D) 33	R	1.8	4.1	4.3	3.8	3.5	1.0	1.4	3.9	2.3	2.15	
RGB Input												
DSO [10]	S	7.3	21.8	30.6	26.5	21.6	1.5	12.9	13.8	40.7	17.23	
DROID-SLAM [66]	S	7.5	4.1	4.3	5.4	5.3	1.2	1.6	4.0	2.2	2.25	
MonoGS [42]	S	15.3	17.3	26.4	35.2	23.6	1.1	21.5	17.4	44.2	21.05	
Splat-SLAM [54]	S	8.8	3.0	4.9	25.8	10.6	2.3	1.3	3.9	2.2	2.43	
DDN-SLAM (RGB) [33]	R	-	-	-	-	-	2.5	2.8	8.9	4.1	4.58	
MegaSaM [37]	R	3.7	2.6	4.1	4.0	3.6	0.6	1.5	2.6	1.8	1.63	
WildGS-SLAM [89]	R	2.7	2.4	3.6	3.1	2.94	0.4	1.3	3.3	1.6	1.63	
DynaMoN (MS) [55]	D	6.8	3.8	2.4	3.5	4.1	1.4	1.4	3.9	2.0	2.18	
DynaMoN (MS&SS) 55	D	2.8	2.7	14.8	2.2	5.6	0.7	1.4	3.9	1.9	1.98	
D4DGS-SLAM* [65]	D	3.6	3.9	4.5	5.2	4.3	-	-	-	-	-	
4D-GS SLAM* [35]	D	2.4	3.7	8.9	9.4	6.1	0.5	2.1	2.6	-	-	
ProDyG (Ours)	D	2.7	2.6	4.9	2.9	3.29	1.6	1.2	3.0	1.7	1.89	

• Type S: Static scenes

Method	Туре	Bor	nn RGB-D	Dynamic	Dataset [47]	TUM RGB-D Dataset 62					
	31	Ball	Ball2	Pers	Pers2	Avg.	f3/ws	f3/wx	f3/wr	f3/whs	Avg.	
RGB-D Input												
ORB-SLAM2 [44]	S	6.5	23.0	6.9	7.9	11.1	40.8	72.2	80.5	72.3	66.45	
NICE-SLAM [90]	S	24.4	20.2	24.5	53.6	30.7	79.8	86.5	244.0	152.0	140.57	
ReFusion [48]	R	17.5	25.4	28.9	46.3	29.5	1.7	9.9	40.6	10.4	15.7	
DynaSLAM (N+G) [4]	R	3.0	2.9	6.1	7.8	5.0	0.6	1.5	3.5	2.5	2.03	
DG-SLAM [76]	R	3.7	4.1	4.5	6.9	4.8	0.6	1.6	4.3	-	-	
RoDyn-SLAM [19]	R	7.9	11.5	14.5	13.8	11.9	1.7	8.3	-	5.6	-	
DDN-SLAM (RGB-D) 33	R	1.8	4.1	4.3	3.8	3.5	1.0	1.4	3.9	2.3	2.15	
RGB Input												
DSO [10]	S	7.3	21.8	30.6	26.5	21.6	1.5	12.9	13.8	40.7	17.23	
DROID-SLAM [66]	S	7.5	4.1	4.3	5.4	5.3	1.2	1.6	4.0	2.2	2.25	
MonoGS [42]	S	15.3	17.3	26.4	35.2	23.6	1.1	21.5	17.4	44.2	21.05	
Splat-SLAM [54]	S	8.8	3.0	4.9	25.8	10.6	2.3	1.3	3.9	2.2	2.43	
DDN-SLAM (RGB) [33]	R	-	-	-	-	-	2.5	2.8	8.9	4.1	4.58	
MegaSaM [37]	R	3.7	2.6	4.1	4.0	3.6	0.6	1.5	2.6	1.8	1.63	
WildGS-SLAM [89]	R	2.7	2.4	3.6	3.1	2.94	0.4	1.3	3.3	1.6	1.63	
DynaMoN (MS) [55]	D	6.8	3.8	2.4	3.5	4.1	1.4	1.4	3.9	2.0	2.18	
DynaMoN (MS&SS) [55]	D	2.8	2.7	14.8	2.2	5.6	0.7	1.4	3.9	1.9	1.98	
D4DGS-SLAM* [65]	D	3.6	3.9	4.5	5.2	4.3	-	-	-	-	-	
4D-GS SLAM* [35]	D	2.4	3.7	8.9	9.4	6.1	0.5	2.1	2.6	-	-	
ProDyG (Ours)	D	2.7	2.6	4.9	2.9	3.29	1.6	1.2	3.0	1.7	1.89	

• Type S: Static scenes, Type R: Robust against dynamics

Method	Туре	Bonn RGB-D Dynamic Dataset [47]					TUM RGB-D Dataset [62]				
	31	Ball	Ball2	Pers	Pers2	Avg.	f3/ws	f3/wx	f3/wr	f3/whs	Avg.
RGB-D Input											
ORB-SLAM2 [44]	S	6.5	23.0	6.9	7.9	11.1	40.8	72.2	80.5	72.3	66.45
NICE-SLAM [90]	S	24.4	20.2	24.5	53.6	30.7	79.8	86.5	244.0	152.0	140.57
ReFusion [48]	R	17.5	25.4	28.9	46.3	29.5	1.7	9.9	40.6	10.4	15.7
DynaSLAM (N+G) [4]	R	3.0	2.9	6.1	7.8	5.0	0.6	1.5	3.5	2.5	2.03
DG-SLAM [76]	R	3.7	4.1	4.5	6.9	4.8	0.6	1.6	4.3	-	-
RoDyn-SLAM [19]	R	7.9	11.5	14.5	13.8	11.9	1.7	8.3	-	5.6	-
DDN-SLAM (RGB-D) 33	R	1.8	4.1	4.3	3.8	3.5	1.0	1.4	3.9	2.3	2.15
RGB Input											
DSO [10]	S	7.3	21.8	30.6	26.5	21.6	1.5	12.9	13.8	40.7	17.23
DROID-SLAM [66]	S	7.5	4.1	4.3	5.4	5.3	1.2	1.6	4.0	2.2	2.25
MonoGS [42]	S	15.3	17.3	26.4	35.2	23.6	1.1	21.5	17.4	44.2	21.05
Splat-SLAM [54]	S	8.8	3.0	4.9	25.8	10.6	2.3	1.3	3.9	2.2	2.43
DDN-SLAM (RGB) [33]	R	-	-	-	-	-	2.5	2.8	8.9	4.1	4.58
MegaSaM [37]	R	3.7	2.6	4.1	4.0	3.6	0.6	1.5	2.6	1.8	1.63
WildGS-SLAM [89]	R	2.7	2.4	3.6	3.1	2.94	0.4	1.3	3.3	1.6	1.63
DynaMoN (MS) [55]	D	6.8	3.8	2.4	3.5	4.1	1.4	1.4	3.9	2.0	2.18
DynaMoN (MS&SS) 55	D	2.8	2.7	14.8	2.2	5.6	0.7	1.4	3.9	1.9	1.98
D4DGS-SLAM* [65]	D	3.6	3.9	4.5	5.2	4.3	-	-	-	-	-
4D-GS SLAM* [35]	D	2.4	3.7	8.9	9.4	6.1	0.5	2.1	2.6	-	-
ProDyG (Ours)	D	2.7	2.6	4.9	2.9	3.29	1.6	1.2	3.0	1.7	1.89

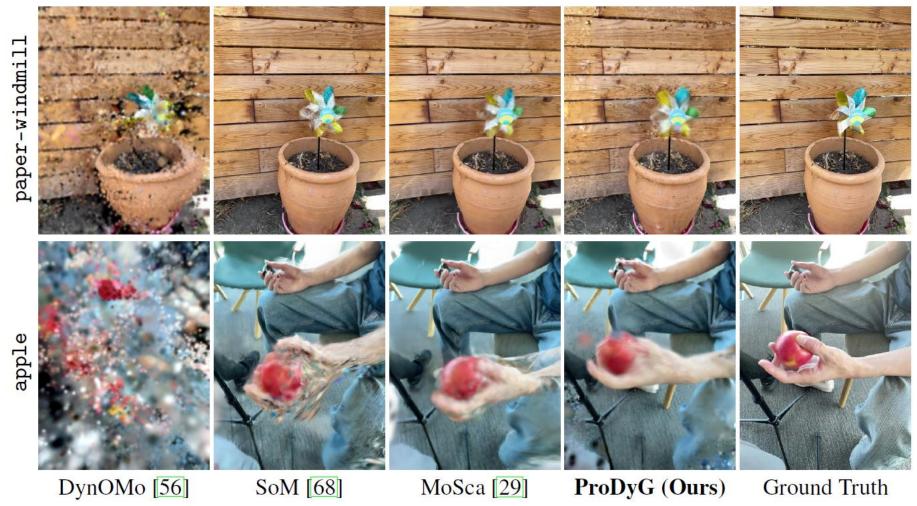
• Type S: Static scenes, Type R: Robust against dynamics, Type D: Dynamic reconstruction

Method	Туре	Boı	nn RGB-D	Dynamic	Dataset [47]	TUM RGB-D Dataset 62				
	31	Ball	Ball2	Pers	Pers2	Avg.	f3/ws	f3/wx	f3/wr	f3/whs	Avg.
RGB-D Input											
ORB-SLAM2 [44]	S	6.5	23.0	6.9	7.9	11.1	40.8	72.2	80.5	72.3	66.45
NICE-SLAM [90]	S	24.4	20.2	24.5	53.6	30.7	79.8	86.5	244.0	152.0	140.57
ReFusion [48]	R	17.5	25.4	28.9	46.3	29.5	1.7	9.9	40.6	10.4	15.7
DynaSLAM (N+G) [4]	R	3.0	2.9	6.1	7.8	5.0	0.6	1.5	3.5	2.5	2.03
DG-SLAM [76]	R	3.7	4.1	4.5	6.9	4.8	0.6	1.6	4.3	-	-
RoDyn-SLAM [19]	R	7.9	11.5	14.5	13.8	11.9	1.7	8.3	-	5.6	-
DDN-SLAM (RGB-D) 33	R	1.8	4.1	4.3	3.8	3.5	1.0	1.4	3.9	2.3	2.15
RGB Input											
DSO [10]	S	7.3	21.8	30.6	26.5	21.6	1.5	12.9	13.8	40.7	17.23
DROID-SLAM [66]	S	7.5	4.1	4.3	5.4	5.3	1.2	1.6	4.0	2.2	2.25
MonoGS [42]	S	15.3	17.3	26.4	35.2	23.6	1.1	21.5	17.4	44.2	21.05
Splat-SLAM [54]	S	8.8	3.0	4.9	25.8	10.6	2.3	1.3	3.9	2.2	2.43
DDN-SLAM (RGB) [33]	R	-	-	-	-	-	2.5	2.8	8.9	4.1	4.58
MegaSaM [37]	R	3.7	2.6	4.1	4.0	3.6	0.6	1.5	2.6	1.8	1.63
WildGS-SLAM [89]	R	2.7	2.4	3.6	3.1	2.94	0.4	1.3	3.3	1.6	1.63
DynaMoN (MS) [55]	D	6.8	3.8	2.4	3.5	4.1	1.4	1.4	3.9	2.0	2.18
DynaMoN (MS&SS) [55]	D	2.8	2.7	14.8	2.2	5.6	0.7	1.4	3.9	1.9	1.98
D4DGS-SLAM* [65]	D	3.6	3.9	4.5	5.2	4.3	-	-	-	-	-
4D-GS SLAM* [35]	D	2.4	3.7	8.9	9.4	6.1	0.5	2.1	2.6	-	-
ProDyG (Ours)	D	2.7	2.6	4.9	2.9	3.29	1.6	1.2	3.0	1.7	1.89

- Type S: Static scenes, Type R: Robust against dynamics, Type D: Dynamic reconstruction
- *ProDyG* best among type **D**, and only slightly worse than WildGS-SLAM (**R**)

Method	Type	Type Bonn RGB-D Dynamic Dataset 47						TUM RGB-D Dataset [62]					
	-31	Ball	Ball2	Pers	Pers2	Avg.	f3/ws	f3/wx	f3/wr	f3/whs	Avg.		
RGB-D Input													
ORB-SLAM2 [44]	S	6.5	23.0	6.9	7.9	11.1	40.8	72.2	80.5	72.3	66.45		
NICE-SLAM [90]	S	24.4	20.2	24.5	53.6	30.7	79.8	86.5	244.0	152.0	140.57		
ReFusion [48]	R	17.5	25.4	28.9	46.3	29.5	1.7	9.9	40.6	10.4	15.7		
DynaSLAM (N+G) [4]	R	3.0	2.9	6.1	7.8	5.0	0.6	1.5	3.5	2.5	2.03		
DG-SLAM [76]	R	3.7	4.1	4.5	6.9	4.8	0.6	1.6	4.3	-	-		
RoDyn-SLAM [19]	R	7.9	11.5	14.5	13.8	11.9	1.7	8.3	-	5.6	-		
DDN-SLAM (RGB-D) 33	R	1.8	4.1	4.3	3.8	3.5	1.0	1.4	3.9	2.3	2.15		
RGB Input													
DSO [10]	S	7.3	21.8	30.6	26.5	21.6	1.5	12.9	13.8	40.7	17.23		
DROID-SLAM [66]	S	7.5	4.1	4.3	5.4	5.3	1.2	1.6	4.0	2.2	2.25		
MonoGS [42]	S	15.3	17.3	26.4	35.2	23.6	1.1	21.5	17.4	44.2	21.05		
Splat-SLAM [54]	S	8.8	3.0	4.9	25.8	10.6	2.3	1.3	3.9	2.2	2.43		
DDN-SLAM (RGB) [33]	R	-	-	-	-	-	2.5	2.8	8.9	4.1	4.58		
MegaSaM [37]	R	3.7	2.6	4.1	4.0	3.6	0.6	1.5	2.6	1.8	1.63		
WildGS-SLAM [89]	R	2.7	2.4	3.6	3.1	2.94	0.4	1.3	3.3	1.6	1.63		
DynaMoN (MS) [55]	D	6.8	3.8	2.4	3.5	4.1	1.4	1.4	3.9	2.0	2.18		
DynaMoN (MS&SS) [55]	D	2.8	2.7	14.8	2.2	5.6	0.7	1.4	3.9	1.9	1.98		
D4DGS-SLAM* [65]	D	3.6	3.9	4.5	5.2	4.3	-	-	-	-	-		
4D-GS SLAM* [35]	D	2.4	3.7	8.9	9.4	6.1	0.5	2.1	2.6	-	-		
ProDyG (Ours)	D	2.7	2.6	4.9	2.9	3.29	1.6	1.2	3.0	1.7	1.89		

Novel View Synthesis: Quantitative Results


- Evaluated on the iPhone dataset [Gao 2022] from fixed test views
- ProDyG tested under 4 settings: with / without online tracking, RGB-D / RGB-only
- Beats Shape of Motion [Wang 2024] in PSNR and SSIM, and only marginally worse than MoSca [Lei 2024], with extra constraints of online reconstruction and tracking
- Significantly better than DynOMo [Seidenschwarz 2024] which is the only online baseline method
- RGB-only still works reasonably well

	Shape of Motion [68]	DynOMo [56]	MoSca [29]	Gaussian Marbles [61]	•	ProDyG (Ours)	ProDyG (Ours)	ProDyG (Ours)
Online Reconstr. Online Tracking RGB-only	-	х х	X X X	X X X	х х	✓ ✓ X	✓ X ✓	√ √ √
PSNR↑ SSIM↑ LPIPS↓	17.43 0.591 0.303	11.98 0.436 0.748	18.44 0.666 0.311	16.00 - 0.437	17.65 0.634 0.390	17.87 0.643 0.377	15.41 0.603 0.462	15.40 0.582 0.492

Novel View Synthesis: Qualitative Results

- Evaluated on the iPhone dataset [Gao 2022]
- Dynamic objects reconstructed by *ProDyG* tend to show more accurate silhouettes

More Visual Results as Videos (Bonn RGB-D)

Depth Input

Training View Rerendering **ETH** zürich

Fixed Novel View Rendering + Estimated Camera Poses + Dynamic Gaussian Trajectories

Thank you for listening!

Project page: https://cs-vision.github.io/ProDyG.github.io or scan:

