Generate, but Verify: Reducing Hallucination in Vision-Language Models with Retrospective Resampling

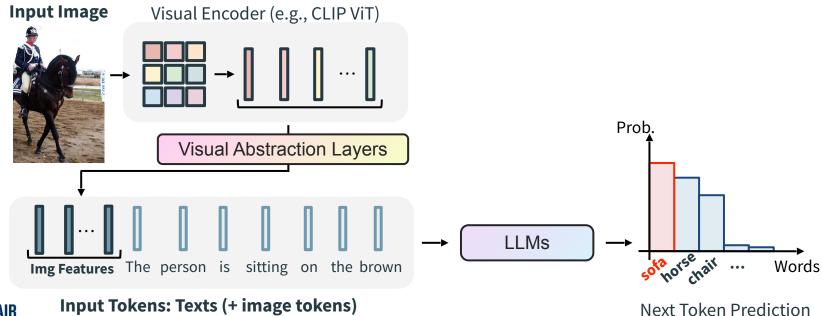
Tsung-Han (Patrick) Wu, Heekyung (Anne) Lee, Jiaxin Ge, Joseph E. Gonzalez, Trevor Darrell, David M. Chan

UC Berkeley

NeurIPS 2025

VLMs Suffer from Hallucinations

Visual Hallucinations: Describing nonexistent objects or concepts in the image, usually due to training data biases or strong language priors



Prior Methods

Jser "Describe this image."

Preventing hallucinations is hard, but detection isn't — we need a **verifier** after the fact.

VLM "The boy is sharing his umbrella...

Prior Methods

User "Describe this image."

Preventing hallucinations is hard, but detection isn't — we need a **verifier** after the fact.

Verifying after full outputs is slow and mostly ends in refusal — we need **correction** instead!

VLM "The boy is sharing his umbrella...

Prior Methods

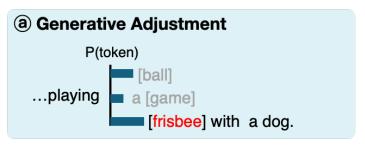
Jser "Describe this image."

Preventing hallucinations is hard, but detection isn't — we need a **verifier** after the fact.

Verifying after full outputs is slow and mostly ends in refusal — we need **correction** instead!

VLM "The boy is sharing his umbrella...

Why not both?



REVERSE-VLM <u>RE</u>trospective <u>VER</u>ification and <u>SE</u>lf-Correction

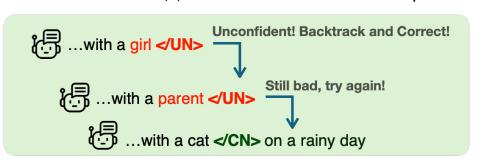
Generate, but Verify: The birth of REVERSE-VLM

A single VLM that can not only **generate**, but **verify and corrects** themselves on-the-fly

→ towards robust, controllable, and interpretable systems!

How to Enable This?

(1) **Train** a model that can do explicit confidence estimation



(2) Do retrospective resampling inference for multi-round correction

1. SFT Dataset Construction

Source: 665K LLaVA-SFT Dataset

: Noun Phrase Opening

</CN>: Confident Token

</UN>: Unconfident Token

Human: What feature can be seen on the back of the bus?

GPT: The back of the bus features an advertisement.

Noun Phrase Extraction & Tagging

GPT: The back</CN> of the bus</CN> features an advisement</CN> . **Positive Data**

Negative Phrase Augmentation

GPT: The back</CN> of the bus</CN> features a window</UN>.

Negative Data

1. SFT Dataset Construction

1.3M Open-Source Datasets on 😣

COCO/train2017/

Captioning Question

VQA task

TOM HOPKINS AUDIO SALES COLLECTION Advanced Sales Survival Training, Mastering the Art of Selling & The Academy of Master Closing Read by Tom Hopkins Three Bestselling Audio Books on Compact Dis

Image

"How many total baseball players are shown Question in the image?"

Pos Answer "There are three baseball players</CN> shown in the image</CN>.",

Neg Answer

Number

"There are five soccer players</UN>"

Object

Attribute

"Describe this image in your own words."

"The image features an old military aircraft</CN> on display</CN> ..."

"The image features a modern commercial airplane</UN>"

"Who wrote this book?"

"Tom Hopkins</CN>"

"John Steinbeck</UN>"

2. Hallucination-Aware Training

Model needs to:

- 1. Do standard next token prediction
- 2. Avoid hallucination modeling
- 3. Learn to model confidence with </CN> and </UN>

The back</CN> of the bus</CN> features an advertisement</CN>

The back</CN> of the bus</CN> features a window</UN>

- Model trained to predict these tokens
- Model **ignores** these tokens during training

The back</CN>

This on This on This

The back</CN> of the bus</CN> features

The back</CN> of the bus</CN> features a window</UN>

This co This chie

CN. CON. CON. CON. CO.

WAS:00

UNS:00

V: 0.0 0.20

WN: 0.83

The back</CN> of the bus</CN>

The back</CN> of the bus</CN> features an advertisement</CN>

Summary: Retrospective Resampling

① User Query

"Describe this image."

Experimental Results

SOTA on Captioning & Open-ended VQAs

Captioning Tasks

Base VLM	Method Type	Method	CHAIR-MSCOCO		AMBER-G			
			$\overline{\operatorname{CHAIR}_i(\downarrow)}$	$\overline{\operatorname{CHAIR}_s(\downarrow)}$	$\overline{\text{CHAIR}}(\downarrow)$	Cover (†)	Hall (↓)	Cog (\lambda)
	None		15.4	50.0	7.8	51.0	36.4	4.2
LLaVA-v1.5 7B [35]	Gen-Adjust	VCD [28]	14.9	48.6	-	-	-	-
		OPERA [‡] [23]	14.6	47.8	7.3	49.6	32.0	3.5
		DoLA ^{† ‡} [16]	14.1	51.6	7.6	51.6	36.0	4.0
		AGLA [3]	14.1	43.0	-	-	-	-
		MEMVR [58]	13.0	46.6	-	-	-	-
	w/ Train	EOS [55]	12.3	40.2	5.1	49.1	22.7	2.0
		HALVA [41]	11.7	41.4	6.6	53.0	32.2	3.4
		HA-DPO [56]	11.0	38.2	6.7	49.8	30.9	3.3
	Post-hoc Refine	Woodpecker [†] [53]	14.8	45.8	6.9	48.9	30.4	3.6
	Combination	REVERSE $_{(\tau = 0.003)}$	Gain 10.3	37.0	6.0	52.2	30.4	3.0
		$\mathbf{REVERSE}_{(\tau=0.0003)}$	6.1	13.6	4.0	26.9	10.2	0.9

+ Multiple Models

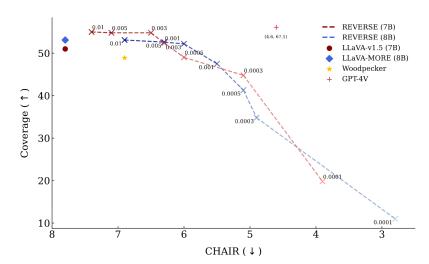
+ Multiple Tasks

MM-Hal					l% Gair	Sain		
Base VLM	Method	Score (†)	Hall. Rate (\downarrow)	Method	Avg. Acc. (†)	FP Acc.	VC Acc.	IC Acc.
	None [†]	2.50	0.53	Qwen2.5-VL ^{FT} 3B				
LLaVA-MORE 8B	DoLA [†] [15] Woodpecker [†] [51] REVERSE _{($\tau = 0.003$}		0.51 0.58 0.54	None [†] DoLA [†] [15]	33.5 27.4	25.4 16.5	51.6 51.1	26.4 19.0
	$REVERSE_{(\tau=0.000)}$	₍₃₎ 2.93	0.40	$\mathbf{REVERSE}_{(\tau=0.01)}$	45.1	42.9	41.8	55.5

Towards Efficient Corrections & Controllable VLMs

Studies on AMBER-G Dataset

# Rounds (N)	0	5	10	20	50
CHAIR (↓)	7.8	,,,	6.8	6.7	6.0
#Tokens (%)	1.00×		2.05×	2.63×	3.05×



15% gain from **50** round corrections but only **3.05x** more tokens

Tuning the **threshold** (τ) can control the trade-off between **expressiveness** & **hallucinations**

We can beat GPT-4V on the CHAIR metric with low threshold, making VLMs conservative!

Conclusions

→ Current VLMs are still prone to visual hallucinations.

- → Current VLMs are still prone to visual hallucinations.
- → When verification is easier, we can insert retrospective reasoning tasks to encourage the model to "think twice" about its process.

- → Current VLMs are still prone to visual hallucinations.
- → When verification is easier, we can insert retrospective reasoning tasks to encourage the model to "think twice" about its process.
- → We present REVERSE, the first and effective hallucination reduction method unifying the generation adjustment and post-hoc verification.

- → Current VLMs are still prone to visual hallucinations.
- → When verification is easier, we can insert retrospective reasoning tasks to encourage the model to "think twice" about its process.
- → We present REVERSE, the first and effective hallucination reduction method unifying the generation adjustment and post-hoc verification.
- → REVERSE is not endpoints but starting points that invite the community to explore the "generate-but-verify" paradigm.

- → Current VLMs are still prone to visual hallucinations.
- → When verification is easier, we can insert retrospective reasoning tasks to encourage the model to "think twice" about its process.
- → We present REVERSE, the first and effective hallucination reduction method unifying the generation adjustment and post-hoc verification.
- → REVERSE is not endpoints but starting points that invite the community to explore the "generate-but-verify" paradigm.

Thanks for listening!

