





# HBLLM: Wavelet-Enhanced High-Fidelity 1-Bit Quantization for LLMs

Ningning Chen
Sun Yat-sen University
chennn27@mail2.sysu.edu.cn

Weicai Ye
Sun Yat-sen University
cai\_rcy@163.com

Ying Jiang Sun Yat-sen University jiangy32@mail.sysu.edu.cn

# **Content**









- Method
- **Experiments**
- **Conclusion**

# Introduction







# Why to propose 1-bit PTQ methods for LLMs?

- Large Language Models (**LLMs**) are difficult to deploy due to their memory size.
- Post-Training Quantization (PTQ) reduce memory size by compressing LLMs without additional training
- 1-bit PTQ methods quantize weights of LLMs into 1 bit. Compare to 16-bit models,
  - potential 75~90% memory of weights saving
  - potential faster inference speed
- BiLLM is the first 1-bit PTQ method without knowledge distillation.

# Why not to use 1-bit PTQ methods for LLMs?

- X large reconstruction error
- X loss of critical information
- X difficulty in adaptation to heterogeneous model structures

 $\langle\!\langle$ 

# Introduction







#### **HBLLM**

- A 1-bit PTQ weight-only framework we propose.
- Integrating localized orthogonal transformations (i.e., Haar wavelets) into a BiLLM-style quantization process with other enhancements (Table 1).

| Weaknessees in 1-bit PTQ methods                           | Sources                             | Enhancements used in HBLLM                            |
|------------------------------------------------------------|-------------------------------------|-------------------------------------------------------|
| Large reconstruction error                                 | Limited expressiveness              | Quantization in Haar domain                           |
| Loss of critical information                               | Inaccurate salient-column selection | <b>12-norm-based saliency-driven</b> column selection |
| Difficulty in adaptation to heterogeneous model structures | Lack of structure-aware grouping    | Frequency-aware multi-parameter intra-row grouping    |
| Extra memory cost is not small                             |                                     | Intra-frequency-band mean sharing                     |

Table 1. Enhancements used in HBLLM against weaknesses in 1-bit PTQ methods





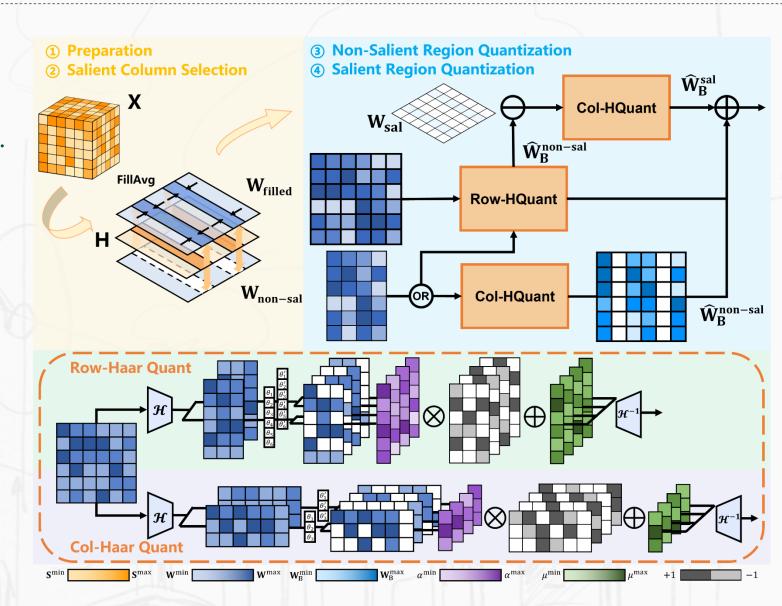


#### **Quantization Pipeline Overview:**

HBLLM integrates the Haar transform into a BiLLM-style quantization pipeline.

#### 1. Preparation Phase:

Compute the column-wise importance scores using a Hessian-based saliency metric.







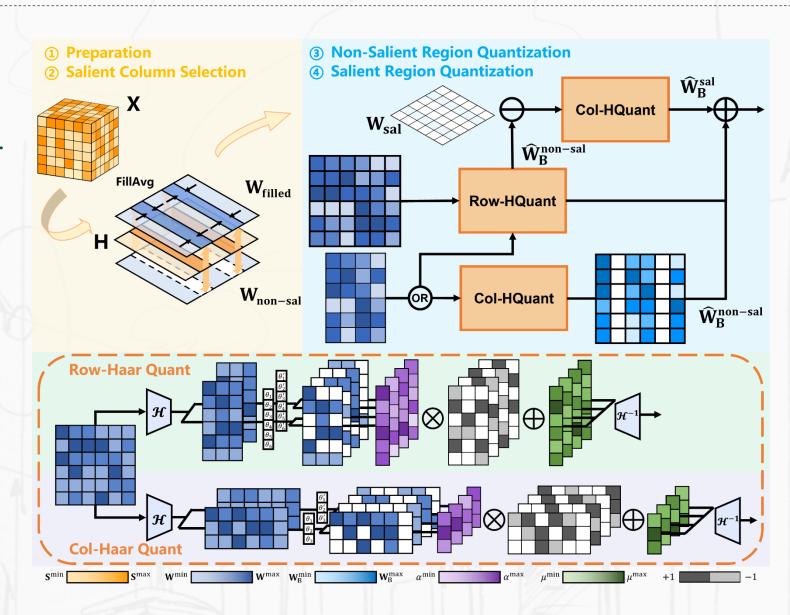


#### **Quantization Pipeline Overview:**

HBLLM integrates the Haar transform into a BiLLM-style quantization pipeline.

Salient Column Selection and Quantization:

Select top-K salient columns → apply
HaarQuant → keep minimal-error
subset





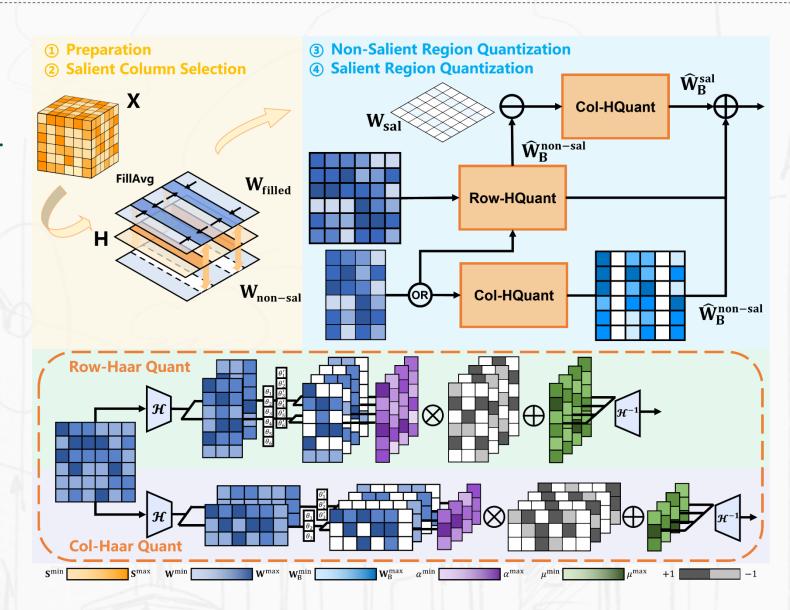




#### **Quantization Pipeline Overview:**

HBLLM integrates the Haar transform into a BiLLM-style quantization pipeline.

3. Non-Salient Region Quantization:Fill missing values (FillAvg) → applyHaarQuant again





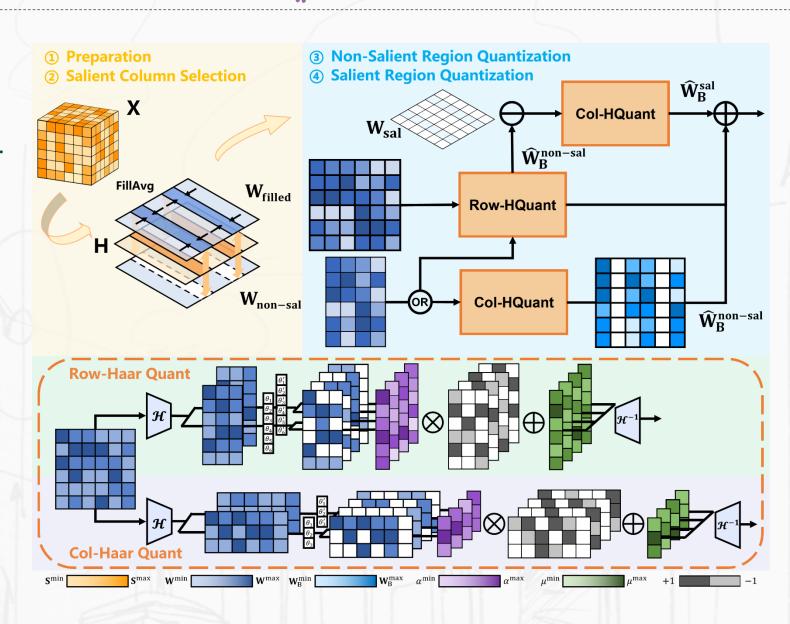




#### **Quantization Pipeline Overview:**

HBLLM integrates the Haar transform into a BiLLM-style quantization pipeline.

4. Adjustment and Refinement









## **Experimental Settings**

- **Dataset:** see the following figure
- **■** Baselines:

Full Precision、BiLLM[2]、ARB-LLM[3]、PB-LLM[4]、FrameQuant[5]

**■** Backbone models:

OPT, LLaMA-1, LLaMA-2, and LLaMA-3

**■ Evaluation Metircs:** 

Perplexity (↓), Accuracy (↑)

Perplexity↓ WikiText2 C4 PTB CommonSenseQA↑

PIQA BoolQ ARC-e ARC-c

HellaSwag Winogrande

COPA OBQA LAMABADA

[1] Frantar E, Ashkboos S, Hoefler T, et al. OPTQ: Accurate Post-training Quantization for Generative Pre-trained Transformers. 11th International Conference on Learning Representations (ICLR). 2023.

[2] Huang W, Liu Y, Qin H, et al. BiLLM: Pushing the Limit of Post-training Quantization for LLMs. *Proceedings of the 41st International Conference on Machine Learning(ICML)*. 2024: 20023-20042.

[3] Li Z, Yan X, Zhang T, et al. ARB-LLM: Alternating Refined Binarizations for Large Language Models. arXiv preprint arXiv:2410.03129, 2024.

[4] Shang Y, Yuan Z, Wu Q, et al. PB-LLM: Partially Binarized Large Language Models. *The Twelfth International Conference on Learning Representations(ICLR)*. 2024.

[5] Adepu H, Zeng Z, Zhang L, et al. FrameQuant: Flexible Low-Bit Quantization for Transformers. Forty-first International Conference on Machine Learning(ICML). 2024.









#### **Summary of Experiment results:**

# HBLLM Achieves SOTA Performance in 1-bit PTQ methods

- The ppl ratio between HBLLM and the original FP16 model remains within the range of 1.2–2.2 (in Fig.1)
- 73.8~88.8% of the original model's accuracy in QA tests
- 77.1~80.5% memory of weights saving
- The expected inference latency is approximately 31.8% of the FP16 baseline inference time

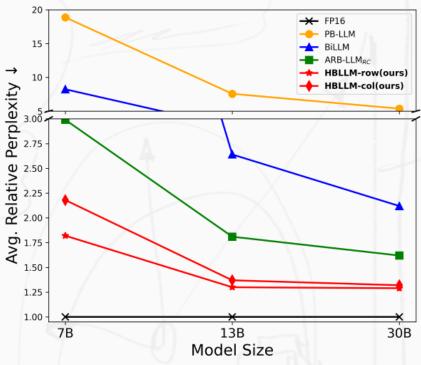


Figure 1: Average relative perplexity (normalized to FP16) on PTB, WikiText2, and C4 for LLaMA-1 family models, comparing LLM binarization methods and our HBLLM.







|      | LLaMA1                |        | Perplexity $\downarrow$ |       | AvgQA↑ |       | LLaMA2                               |                       | Perplexity $\downarrow$ |       |       | AvgQA↑ |       |
|------|-----------------------|--------|-------------------------|-------|--------|-------|--------------------------------------|-----------------------|-------------------------|-------|-------|--------|-------|
| Size | Method                | W-bits | C4                      | Wiki2 | PTB    |       | Size                                 | Method                | W-bits                  | C4    | Wiki2 | PTB    |       |
| 7B   | FullPrecision         | 16.00  | 6.71                    | 5.68  | 35.80  | 65.62 |                                      | FullPrecision         | 16.00                   | 8.66  | 6.94  | 37.86  | 65.54 |
|      | FrameQuant            | 2.20   | 10.89                   | 9.96  | 104.7  | 56.19 | 71<br>01 7B<br>65<br>23<br><b>48</b> | FrameQuant            | 2.20                    | 14.66 | 13.34 | 177.1  | 52.75 |
|      | PB-LLM                | 1.70   | 90.19                   | 113.4 | 830.0  | 35.71 |                                      | PB-LLM                | 1.70                    | 63.95 | 55.40 | 486.2  | 36.54 |
|      | BiLLM                 | 1.09   | 43.74                   | 44.85 | 369.3  | 40.01 |                                      | BiLLM                 | 1.08                    | 33.97 | 31.38 | 373.0  | 42.11 |
|      | $ARB-LLM_X$           | 1.09   | 22.80                   | 24.70 | 240.5  | 45.65 |                                      | $ARB-LLM_X$           | 1.08                    | 26.55 | 21.74 | 314.2  | 45.41 |
|      | $ARB-LLM_{RC}$        | 1.09   | 15.13                   | 13.45 | 155.8  | 52.23 |                                      | ARB-LLM <sub>RC</sub> | 1.08                    | 17.87 | 15.85 | 462.2  | 46.71 |
|      | HBLLM-row             | 1.09   | 9.49                    | 8.82  | 88.86  | 57.48 |                                      | HBLLM-row             | 1.07                    | 11.75 | 10.52 | 89.23  | 57.74 |
|      | HBLLM-col             | 1.00   | 10.38                   | 9.67  | 117.7  | 54.03 |                                      | HBLLM-col             | 1.00                    | 12.51 | 11.33 | 150.6  | 54.09 |
| AS   | FullPrecision         | 16.00  | 6.24                    | 5.09  | 25.36  | 68.09 | 18/                                  | FullPrecision         | 16.00                   | 6.18  | 4.88  | 43.02  | 69.18 |
|      | FrameQuant            | 2.20   | 8.79                    | 7.84  | 50.69  | 60.69 |                                      | FrameQuant            | 2.20                    | 9.40  | 7.80  | 109.3  | 61.35 |
|      | PB-LLM                | 1.70   | 38.41                   | 46.02 | 190.2  | 40.39 |                                      | PB-LLM                | 1.70                    | 313.4 | 289.4 | 934.4  | 32.91 |
| 13B  | BiLLM                 | 1.10   | 13.93                   | 14.99 | 69.75  | 50.89 | 13B                                  | BiLLM                 | 1.08                    | 22.17 | 19.57 | 303.4  | 46.76 |
|      | ARB-LLM <sub>X</sub>  | 1.10   | N/A                     | N/A   | N/A    | N/A   |                                      | ARB-LLM <sub>X</sub>  | 1.08                    | N/A   | N/A   | N/A    | N/A   |
|      | ARB-LLM <sub>RC</sub> | 1.10   | 10.68                   | 10.19 | 43.85  | 59.58 |                                      | ARB-LLM <sub>RC</sub> | 1.08                    | 11.90 | 10.98 | 151.8  | 57.35 |
|      | HBLLM-row             | 1.09   | 7.62                    | 6.68  | 34.94  | 62.57 |                                      | HBLLM-row             | 1.07                    | 7.82  | 6.71  | 61.75  | 63.61 |
|      | HBLLM-col             | 1.00   | 7.77                    | 6.98  | 37.62  | 61.25 |                                      | HBLLM-col             | 1.00                    | 8.28  | 7.00  | 69.74  | 62.04 |
|      | FullPrecision         | 16.00  | 5.31                    | 3.53  | 21.11  | 72.27 |                                      | FullPrecision         | 16.00                   | 5.24  | 3.32  | 21.49  | 72.96 |
|      | FrameQuant            | 2.20   | 6.69                    | 5.55  | 27.48  | 68.58 | 70B                                  | FrameQuant            | 2.20                    | N/A   | N/A   | N/A    | N/A   |
|      | PB-LLM                | 1.70   | 12.66                   | 12.76 | 99.67  | 62.48 |                                      | PB-LLM                | 1.70                    | N/A   | N/A   | N/A    | 54.26 |
| 65B  | BiLLM                 | 1.10   | 9.26                    | 8.58  | 41.93  | 62.05 |                                      | BiLLM                 | 1.09                    | 15.57 | 15.86 | 71.03  | 55.81 |
|      | ARB-LLM <sub>X</sub>  | 1.10   | N/A                     | N/A   | N/A    | N/A   |                                      | ARB-LLM <sub>X</sub>  | 1.09                    | N/A   | N/A   | N/A    | N/A   |
|      | ARB-LLM <sub>RC</sub> | 1.10   | 7.48                    | 6.47  | 29.14  | 68.53 |                                      | ARB-LLM <sub>RC</sub> | 1.09                    | 7.26  | 6.00  | 28.43  | 68.77 |
|      | HBLLM-row             | 1.09   | 6.28                    | 5.07  | 24.11  | 69.18 |                                      | HBLLM-row             | 1.08                    | 6.18  | 4.82  | 24.69  | 70.01 |
|      | HBLLM-col             | 1.00   | 6.44                    | 5.26  | 30.38  | 67.83 |                                      | HBLLM-col             | 1.00                    | 6.63  | 5.04  | 26.31  | 68.61 |

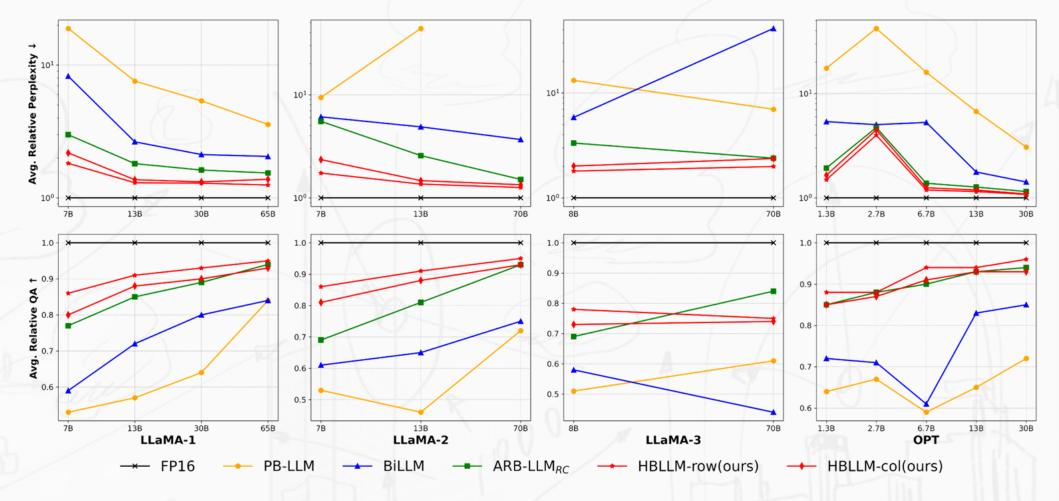
- ✓ Overall: Achieve SOTA performance
- ✓ Flexibility: Be beneficial to various LLMs

*Note:* All methods are calibrated on C4 with 128 samples and a sequence length of 2048. A block size of 128 is used for channel-wise quantization, as commonly done in prior work. N/A: ARB-LLM<sub>X</sub> method cannot run on a single 3090 GPU - 24GB. W-bits is the average weight overhead per weight.









- ✓ On language modeling tasks, the relative perplexity(vs. FP16) remains within the range of 1.2–2.2, outperforming the next-best methods by 33%–66%
- ✓ On 9 zero-shot QA benchmarks, HBLLM retains **73.8%–88.8%** of the original model's accuracy

# **Conclusion**







- We propose **HBLLM**, a 1-bit **weight-only** PTQ method built upon the BiLLM pipeline with **Haar transform**.
- HBLLM outperforms SOTA 1-bit PTQ methods across multiple LLM families and benchmarks.

# Thank you for watching!









Paper



Code