

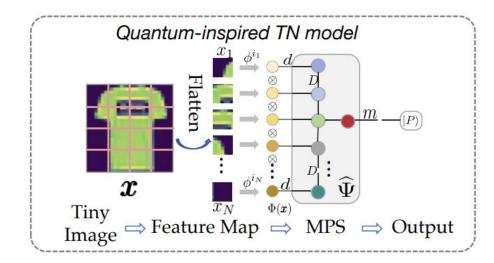
Deep Tree Tensor Networks

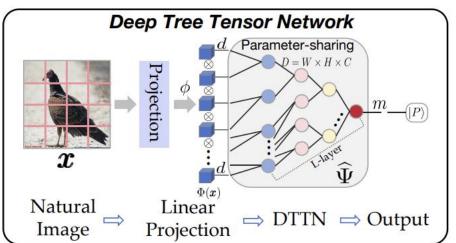
Chang Nie
Nanjing University of Science and Technology
changnie@njust.edu.cn

Code

Wechat

- The Promise of Tensor Networks (TNs)
 - Originated in quantum physics to combat the "curse of dimensionality".
 - Offer a powerful, interpretable framework for modeling high-order interactions.
- But, they face two key challenges in deep learning:
 - 1. **Scalability Challenge:** Traditional TNs like MPS are limited to small-scale inputs and low dimensions, making them impractical for benchmarks like ImageNet.
 - 2. **Expressivity Challenge:** When used only for parameter compression, they lose their core strength: modeling **exponential-order feature interactions**.
- **The Gap:** A significant gap exists between the theoretical power of TNs and their practical application on large-scale vision tasks.





Our Approach: The Deep Tree Tensor Network (DTTN)

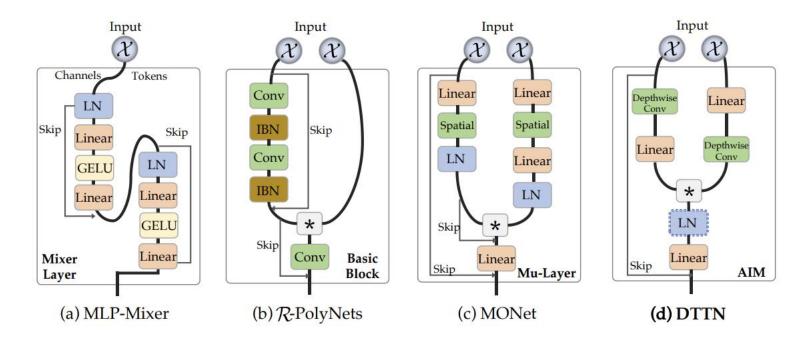
- Goal: To bridge the gap by designing a new architecture that is:
 - Scalable: Natively handles large-scale, high-resolution images.
 - Expressive: Explicitly models high-order multiplicative interactions.
 - Principled: Grounded in the theory of Tensor Networks.
- Our Solution: A Novel, Purely Multilinear Architecture
 - We abandon non-linear activations entirely.
 - We build the network from a simple, efficient interaction module.
 - The entire network unfolds into a classic Tree Tensor Network (TTN).

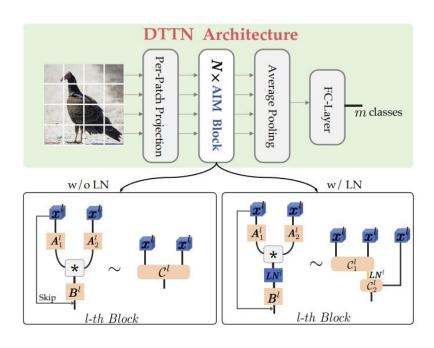
The Core Idea: Antisymmetric Interaction Module (AIM)

Design: An antisymmetric two-branch structure combines spatial and channel operations in reverse orders.

Key Advantages:

- (a) Parameter Efficient: More efficient than a symmetric design.
- (b) Purely Multilinear: Maintains the network's polynomial nature.





$$egin{aligned} oldsymbol{x}^{l+1} = & oldsymbol{x}^l + oldsymbol{B}^l \left((oldsymbol{A}_1^l oldsymbol{x}^l) * (oldsymbol{A}_2^l oldsymbol{x}^l)
ight) \ = & oldsymbol{x}^l + \operatorname{Reshape} \left(oldsymbol{B}^l (oldsymbol{A}_1^{l^T} \odot oldsymbol{A}_2^{l^T})^T
ight) imes_{2,3}^{1,2} \left(oldsymbol{x}^l \otimes oldsymbol{x}^l
ight) \ = & oldsymbol{\mathcal{C}}^l imes_{2,3}^{1,2} \left(oldsymbol{x}^l \otimes oldsymbol{x}^l
ight) \end{aligned}$$

Figure 3: Schematic overview of the DTTN architecture.

□ The DTTN is built by hierarchically stacking our core AIM blocks into a deep, multi-stage architecture.

Theoretical Insight: Unfolding into a Tree Tensor Network

Proposition 1. The DTTN has the capability to capture 2^L multiplicative interactions among input elements, which can be represented in the format of Equation (1) as $\Phi(\mathbf{x}) = \otimes^{2^L} \phi(\mathbf{x}, \mathbf{\Lambda}_{\phi})$. Consequently, the elements of $f(\mathbf{x})$ are homogeneous polynomials of degree 2^L over the feature map $\phi(\mathbf{x}, \mathbf{\Lambda}_{\phi})$.

Theorem 1. Given the local mapping function $\phi^{i_j}(x_j) = [x_j^0, \dots, x_j^{2^L}]^T$, a polynomial network with the expansion form of Equation (6) can be transformed into a quantum-inspired TNs model with finite bond dimension.

- ☐ A DTTN without Layer Normalization is mathematically equivalent to a Tree Tensor Network.
- Each AIM acts as a binary node in a tree, performing a tensor contraction that fuses features.
- □ This equivalence allows DTTN to model 2^Lorder interactions, inheriting the exponential expressive power of classic Tensor Networks.

75 -	*-	-*	*			*
Top-1 Acc (%)		•		• • • • • • • • • • • • • • • • • • •	Π-Nets (2020, 12.3M) Hybrid Π-Nets (2020, 1 PDC-comp (2022, 7.5M PDC (2022, 10.7M) R-PolyNet (2023, 12.3M)	1)
65 -				• • • *	<i>D</i> -PolyNet (2023, 11.3M MLP-Mixer-B/16 (2021, MONet-T (2024, 10.3M) DTTN [†] -S(ours, 12.3M)	59.0M)
00 -	90100	120	160	E	ooch	300

Model	Top-1 (%)	Params (M)	FLOPs(B)	Epoch	Activation	Attention	Reso
CNN-based							
ResNet-50 [20]	77.2	25.0	4.1	(=)	ReLU	×	224^{2}
A ² Net [4]	77.0	33.4	31.3	-	ReLU	✓	224^{2}
AA-ResNet-152 [1]	79.1	61.6	23.8	100	ReLU	✓	224^{2}
RepVGG-B2g4 [15]	79.4	55.7	11.3	200	ReLU	×	224^{2}
Transformer- and M	Aamba-based	1					
ViT-B/16 [16]	77.9	86.0	55.0	300	GeLU	✓	224^{2}
DeiT-S/16 [53]	81.2	24.0	5.0	300	GeLU	✓	224^{2}
Swin-T/16 [36]	81.3	29.0	4.5	300	GeLU	✓	224^{2}
Vim-S [62]	80.5	26.0	-	300	SiLU	✓	224^{2}
MLP-based							
MLP-Mixer-B/16 [51]	76.4	59.0	11.6	300	GeLU	×	224^{2}
MLP-Mixer-L/16 [51]	71.8	507.0	44.6	300	GeLU	×	224°
CycleMLP-T [3]	81.3	28.8	4.4	300	GeLU	×	224^{2}
Hire-MLP-Tiny [19]	79.8	18.0	2.1	300	GeLU	×	224^{2}
ResMLP-24 [52]	79.4	6.0	30.0	300	GeLU	×	224
S^2 MLP-Wide [59]	80.0	71.0	14.0	300	GeLU	×	224
S^2 MLP-Deep [59]	80.7	10.5	51.0	300	GeLU	×	224
ViP-Small/14 [21]	80.5	30.0	6.5	300	GeLU	✓	224
AFFNet [24]	79.8	6.0	1.5	300	ReLU	✓	256
Polynomial- and M	ultilinear-bas	sed					
Π-Nets [9]	65.2	12.3	1.9	90	-	×	224
DTTN-S(ours)	71.8 / 77.2	12.3	4.1	90 / 300	-	×	224^{2}
Hybrid Π-Nets [9]	70.7	11.9	1.9	90	ReLU+Tanh	×	224^{2}
PDC [8]	71.0	10.7	1.6	100	ReLU+Tanh	×	224
PDC-comp [8]	70.2	7.5	1.3	100	ReLU+Tanh	×	224^{2}
R-PolyNets [10]	70.2	12.3	1.9	120	-	×	224
D-PolyNets [10]	70.0	11.3	1.9	120	-	×	224
MONet-T [7]	77.0	10.3	2.8	300	-	×	224
DTTN [†] -T(ours)	77.9	7.1	2.3	300	-	×	224
DTTN [†] -S(ours)	79.4	12.3	4.1	300	-	×	224
MONet-S [7]	81.3	32.9	6.8	300	-	×	224
DTTN [†] -L(ours)	82.4	35.9	12.3	300	-	×	224

- □ DTTN significantly outperforms all competing polynomial and multilinear networks.
- ☐ The convergence curve demonstrates faster training and higher final accuracy.

depth and width on model performance.

	Top-1 (%)	Params(M)
L=8, d=256	79.2	5.6
L=16, d=256	85.5	10.2
L=24, d=256	86.8	14.8
L=32, d =256	87.2	19.4
L=32,d=64	63.4	1.3
L=32, d=128	82.5	4.9
L=32, d=512	87.9	76.8

Table 6: The influence of network Table 7: The influence of different design choices for AIM on the performance of the DTTN variants.

	Top-1 (%)	Params(M)
SIM-Conv	86.2	9.1
SIM-Linear	84.9	4.8
DTTN [†] -T	86.4	6.9
Sim-Conv	87.8	15.9
Sim-Linear	85.2	8.3
DTTN [†] -S	87.7	12.1

Table 8: The influence of layer normalization inside AIM on the performance of the DTTN variants.

Model	Top-1 (%)	Params(M)
DTTN-T	85.6	6.9
$DTTN^{\dagger}$ -T	86.4 _{+1.8}	6.9
DTTN-S	87.3	12.1
DTTN [†] -S	87.7 _{+0.4}	12.1
DTTN-L	87.6	35.6
DTTN†-L	88.1 _{+0.5}	35.6

- Antisymmetric Design: The AIM's antisymmetric structure is validated to be more parameter-efficient, saving approximately 20% of parameters with minimal trade-off in performance compared to symmetric alternatives.
- Importance of Layer Normalization (LN): LN is proven to be a critical component for achieving state-ofthe-art results. It significantly boosts final accuracy (by up to +1.8%) and accelerates training convergence.
- Scalability with Depth & Width: The model's performance scales effectively and predictably with increasing network depth and width, demonstrating its robustness and behaving like modern deep architectures.

Table 5: Validating AIM as a pluggable module for enhancing feature interaction in recommendation models with consistent performance gains.

Model	Criteo	Avazu	
DeepFM	80.12	75.46	
DeepFM+AIM	$80.44_{+0.32}$	$75.73_{+0.27}$	
FiBiNet	80.42	76.01	
FiBiNet+AIM	$80.97_{+0.55}$	$76.08_{+0.07}$	
DCN-V2	80.93	76.14	
DCN-V2+AIM	$81.15_{+0.22}$	$76.52_{+0.38}$	

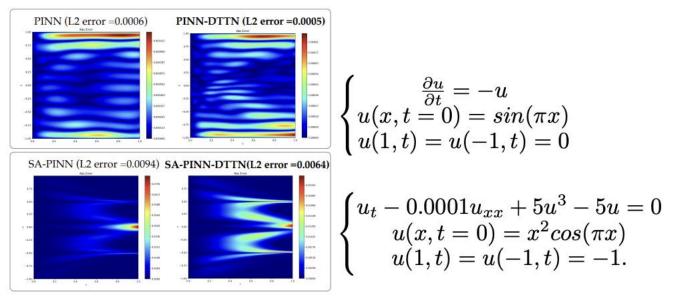


Figure 4: Performance of PINNs on linear and nonlinear Allen-Cahn PDEs: L2 error and absolute error across the Spatial-Temporal domain.

- □ Recommendation Systems: The AIM acts as a plug-and-play module, effectively boosting CTR prediction performance in existing models.
- □ Physics-Informed Neural Networks (PINNs): DTTN serves as a powerful, activation-free core, achieving lower prediction error in solving complex PDEs.

Conclusion

- We proposed DTTN, the first Tensor Network-inspired architecture to achieve promising performance on ImageNet-1K, solving the scalability challenge.
- ☐ The hierarchical AIM architecture provides a scalable and efficient realization of a Tree Tensor Network, capturing exponential-order interactions through pure multilinear operations.
- □ DTTN offers a promising direction for developing powerful and transparent whitebox models that combine high performance with clear structural interpretability.