

LoSplit: Loss-Guided Dynamic Split for Training-Time Defense Against Graph Backdoor Attacks

Di Jin¹, Yuxiang Zhang¹, Binddao Feng¹*, Xiaobao Wang¹, Dongxiao He¹, Zhen Wang² The Thirty-Nineth Annual Conference on Neural Information Processing Systems (NeurIPS), 2025.

Code: https://github.com/zyx924768045/LoSplit

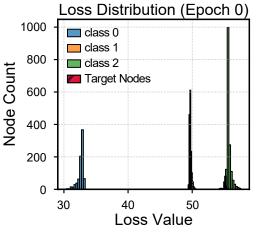
Graph Backdoor Attack to GNNs

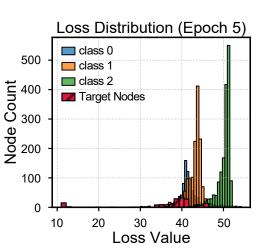
- Graph Neural Networks (GNNs) have strong performance in node classification
- GNNs are susceptible to backdoor attacks
- Adversaries insert triggers into training data to mislead the GNNs to malicious labels when trigger appears while maintain normal when there is no trigger, posing great risk to safety-critical applications.
- Previous defense strategies focus on detecting structural anomalies but fail against subtle feature-perturbing attacks, underscoring the need for more advanced defense.

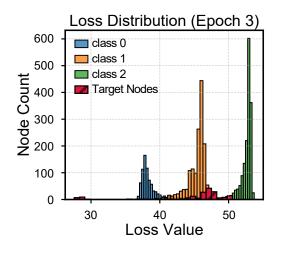
Class-wide loss drift

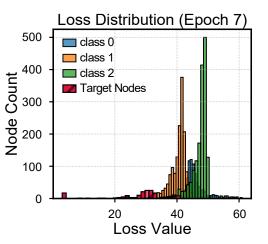
NEURAL INFORMATION PROCESSING SYSTEMS

- Both structural and feature-based backdoor attacks show early convergence of target nodes due to shortcut learning.
- In graphs, message passing causes an unstable class-wide loss drift, making approaches in images ineffective in graphs.
- **Challenge:** How to precisely identify target nodes even in the presence of unstable class-wide loss drift?

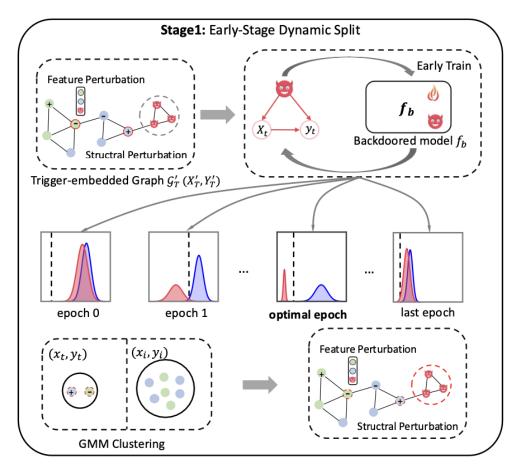


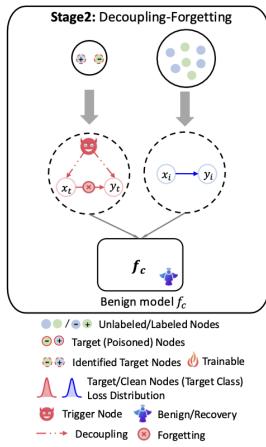






Methodology



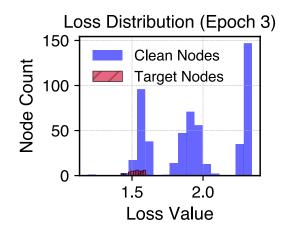


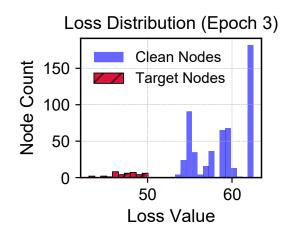
- Early-Stage Dynamic Split: we exploit the distinct early loss dynamics under RCE loss to split target nodes and clean nodes.
- Decoupling–Forgetting: the identified target nodes are decoupled and forgotten from the malicious labels to mitigate the backdoor/shortcut effect.

Early-Stage Loss Dynamics

CE Loss vs. RCE Loss

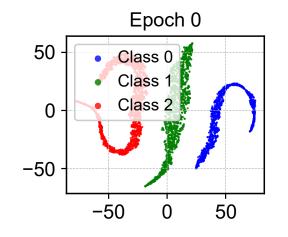
- Target nodes converge much faster than clean nodes in early loss behavior.
- This is amplified under RCE loss, making targets nodes more easily distinguishable.

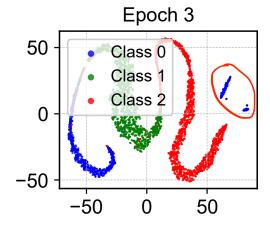




Loss Dynamics

- Nodes of the same class form compact loss clusters.
- Nodes in the target class (malicious label) cluster splits into smaller sub-clusters mainly containing target nodes.





Target Nodes Identification via Early-Stage Dynamic Split

Malicious label Identification:

$$y_t = \arg\max_{y_j \in \mathcal{Y}_T'} \operatorname{Var}\left(\left\{\ell_i^{(t)} \mid y_i = y_j\right\}\right)$$

Splitting Point:

$$y_t = \arg\max_{y_j \in \mathcal{Y}_T'} \operatorname{Var}\left(\left\{\ell_i^{(t)} \mid y_i = y_j\right\}\right) \qquad \qquad \tau^{(t)} = \max\left\{\zeta_i \mid v_i \in \mathcal{C}_{\text{low}}^{(t)}\right\} + \frac{\min\left\{\zeta_j \mid v_j \in \mathcal{C}_{\text{high}}^{(t)}\right\} - \max\left\{\zeta_i \mid v_i \in \mathcal{C}_{\text{low}}^{(t)}\right\}}{2}.$$

Epoch-wise Loss normalization:

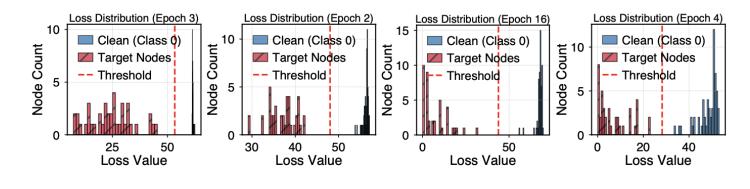
$$\zeta_i^{(t)} = \frac{\ell_i^{(t)} - \mu}{\sigma + \epsilon}, \quad \forall v_i \in \mathcal{V}_{y_t}^{(t)},$$

Target nodes and clean nodes candidates:

$$\mathcal{V}_B^{S(t^*)} = \left\{ v_i \in \mathcal{V}_{y_t}^{(t^*)} \mid \zeta_i^{(t^*)} \leq \tau^{(t^*)} \right\}, \quad \mathcal{V}_C^{S(t^*)} = \mathcal{V}_T \setminus \mathcal{V}_B^{S(t^*)}.$$

Optimal Epoch Selection:

$$t^* = \arg\max_t \left(\mathbb{E}_{v_i \in \mathcal{C}_{\text{high}}^{(t)}}[\ell_i^{(t)}] - \mathbb{E}_{v_j \in \mathcal{C}_{\text{low}}^{(t)}}[\ell_j^{(t)}] \right).$$



GTA

UGBA

DPGBA

SPEAR

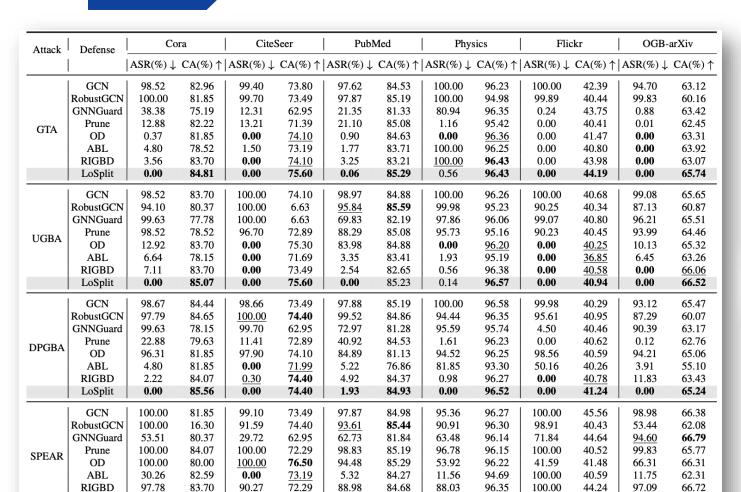
Backdoor Recovery via Decoupling-Forgetting

$$\min_{\theta} \mathcal{L}_{\theta} = \underbrace{\gamma \sum_{v_i \in \mathcal{V}_B^{S(t^*)}} \mathcal{L}\big(f_{\theta}(v_i), \tilde{y}_i\big) + (1 - \gamma) \sum_{v_i \in \mathcal{V}_B^{S(t^*)}} - \mathcal{L}\big(f_{\theta}(v_i), y_t\big) + \sum_{v_j \in \mathcal{V}_C^{S(t^*)}} \mathcal{L}\big(f_{\theta}(v_j), y_j\big),}_{\text{Normal Training}}$$

- LoSplit removes backdoor effects using a Decoupling–Forgetting strategy combining random label reassignment and gradient ascent.
- Random relabeling breaks shortcut learning, while gradient ascent pushes target nodes away from malicious boundary.
- Clean nodes are trained normally to maintain model performance.

Christian	GTA		UGBA		DPGBA		SPEAR	
Strategy	ASR↓	CA↑	ASR↓	CA↑	$ASR\downarrow$	CA↑	ASR↓	CA↑
GCN (No Defense)	97.81	84.42	95.69	83.16	98.78	84.98	92.90	85.13
Node Removal	0.13	84.98	0.00	85.08	<u>95.30</u>	85.39	0.33	84.73
Feature Reinitialization	100.00	80.92	0.00	84.07	98.39	84.78	100.00	81.78
Restore Original Label	0.00	84.37	0.00	81.28	1.15	84.93	0.08	84.24
SCRUB [26]	0.00	<u>84.58</u>	0.00	82.90	97.75	84.63	0.00	84.47
LoSplit	0.06	85.19	0.00	85.33	1.92	84.93	0.00	85.13

Experimental Results



Attack	Defense	Cora			Citeseer			PubMed		
		Prec. ↑	Rec. ↑	$FPR\downarrow$	Prec. ↑	Rec. ↑	FPR ↓	Prec. ↑	Rec. ↑	FPR ↓
	ABL	100.00	85.00	0.00	88.10	92.50	0.75	24.39	100.00	3.05
GTA	RIGBD	85.00	85.00	1.11	95.00	95.00	0.30	93.75	93.75	0.25
	LoSplit	100.00	100.00	0.00	100.00	97.50	0.00	98.77	100.00	0.05
	ABL	100.00	27.50	0.00	100.00	35.00	0.00	100.00	51.25	0.00
UGBA	RIGBD	72.50	72.50	2.03	77.50	77.50	1.35	92.41	92.41	0.30
	LoSplit	100.00	100.00	0.00	100.00	100.00	0.00	100.00	100.00	0.00
	ABL	100.00	42.50	0.00	100.00	52.50	0.00	19.51	60.00	2.44
DPGBA	RIGBD	81.08	75.00	1.29	97.06	82.50	0.15	92.06	72.50	0.25
	LoSplit	100.00	100.00	0.18	100.00	97.50	0.00	100.00	83.12	0.00
	ABL	100.00	12.50	0.00	97.14	85.00	0.15	40.00	40.00	0.60
SPEAR	RIGBD	83.33	12.50	0.18	93.75	37.50	0.10	80.77	51.22	0.13
	LoSplit	100.00	100.00	0.00	93.02	100.00	0.45	88.90	100.00	0.05

Attack	Defense	Physics			Flickr			OGB-arXiv		
		Prec. ↑	Rec. ↑	FPR ↓	Prec. ↑	Rec. ↑	FPR ↓	Prec. ↑	Rec. ↑	FPR ↓
	ABL	12.50	10.00	0.92	21.67	97.50	0.78	8.14	70.00	0.92
GTA	RIGBD	87.14	75.00	0.18	93.13	93.13	0.61	97.17	97.17	0.05
	LoSplit	96.97	100.00	0.07	96.36	99.37	0.03	99.65	99.82	0.01
	ABL	8.33	6.25	0.95	21.67	97.50	0.78	7.72	62.50	0.93
UGBA	RIGBD	92.41	80.00	0.14	99.37	98.12	0.06	98.76	98.76	0.02
	LoSplit	100.00	100.00	0.00	100.00	100.00	0.00	100.00	100.00	0.00
	ABL	10.71	7.50	0.88	0.00	0.00	1.01	9.26	85.00	0.53
DPGBA	RIGBD	85.29	71.25	0.25	100.00	83.12	0.00	86.21	4.42	0.01
	LoSplit	96.97	100.00	0.07	100.00	88.12	0.00	100.00	97.50	0.00
	ABL	11.76	9.38	0.90	0.00	0.00	1.01	96.80	58.94	0.03
SPEAR	RIGBD	<u>78.57</u>	72.50	0.33	0.89	100.00	0.00	0.00	0.00	0.00
	LoSplit	92.12	90.50	0.56	100.00	100.00	0.00	99.45	96.81	0.01

0.25

85.24

0.00

96.42

0.00

45.80

0.20

66.68

84.44

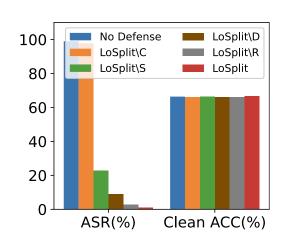
0.00

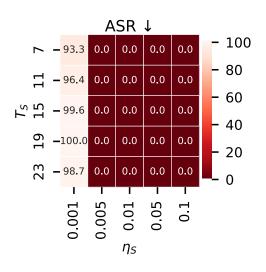
75.00

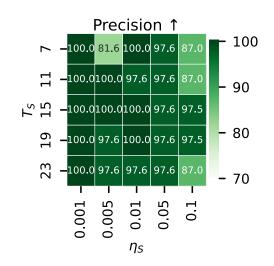
0.00

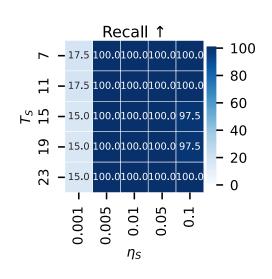
LoSplit

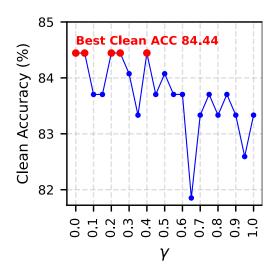
Ablation Study and Hyperparameter Analysis











- Ablation study shows that each component—RCE loss, dynamic split, and Decoupling-Forgetting—plays a crucial role, and removing any of them significantly weakens defense performace.
- Hyperparameter analysis reveals that moderate early-stage epochs (TS) and learning rates (ηS) yield optimal attack suppression and precise target identification.
- Overall, LoSplit maintains high robustness and clean accuracy across a broad hyperparameter range, outperforming SOTA method RIGBD.

Performance on Clean Graph

	Cora	Citeseer	PubMed	Physics	Flickr	OGB-arXiv
GCN (CA)	83.70	74.70	85.18	96.02	45.33	66.12
LoSplit (CA)	83.33	74.39	85.03	95.87	45.11	65.98
LoSplit (FPR)	0.18	1.05	0.48	0.07	0.92	0.36

- On clean graphs, LoSplit maintains almost the same accuracy compared to when there is no defense (GCN).
- The false positive rate is nearly zero, meaning clean nodes are not misclassified.
- This demonstrates LoSplit's utility and safety even when we don't know whether the graph is contaminated or not.

Code: https://github.com/zyx924768045/LoSplit