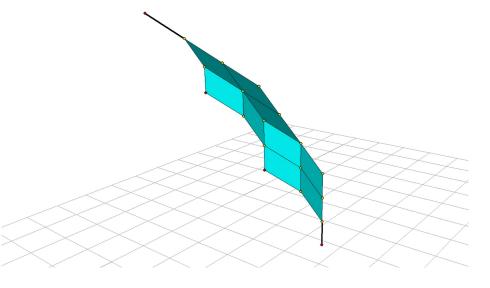
Tropical Attention: Neural Algorithmic Reasoning for Combinatorial Algorithms

Baran Hashemi, Kurt Pasque, Chris Teska, Ruriko Yoshida

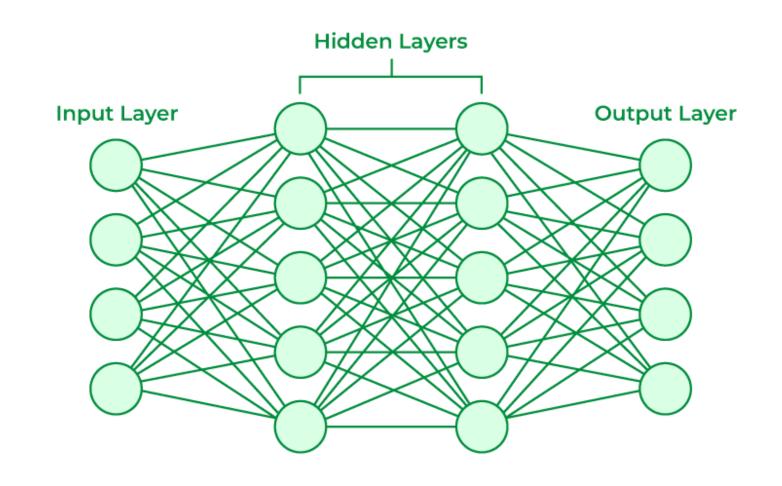
ORIGINS Cluster, Technical University of Munich, Germany Naval Postgraduate School Monterey, California

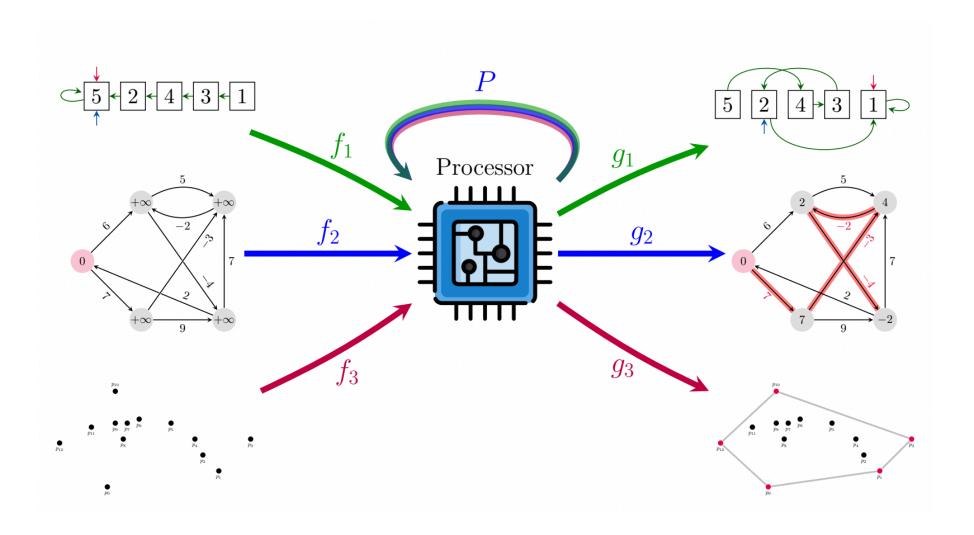


arXiv:2505.17190

Combinatorial Reasoning

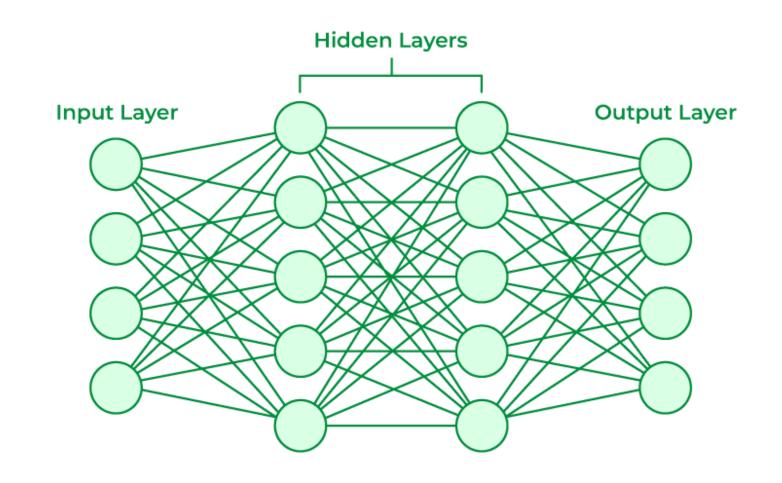
Neural networks are exceptionally capable at pattern recognition

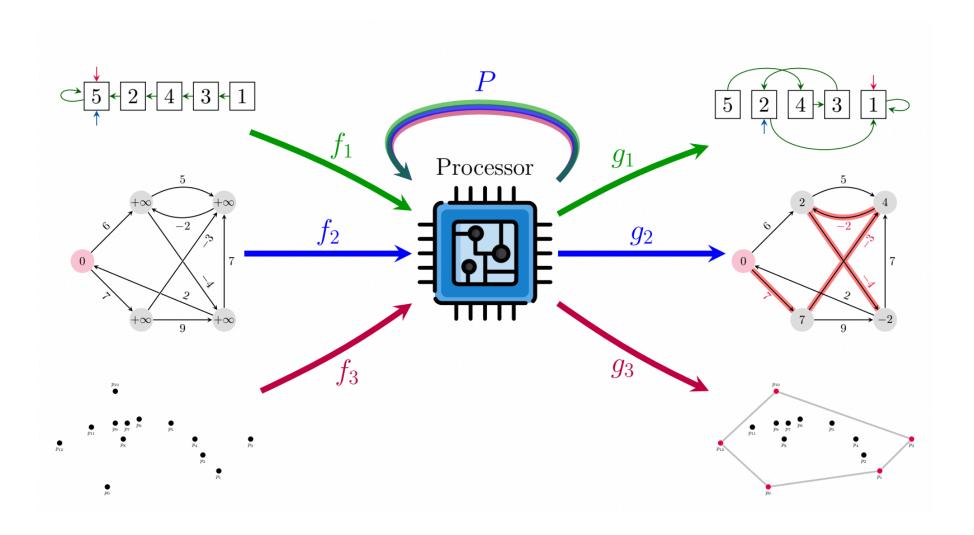




Combinatorial Reasoning

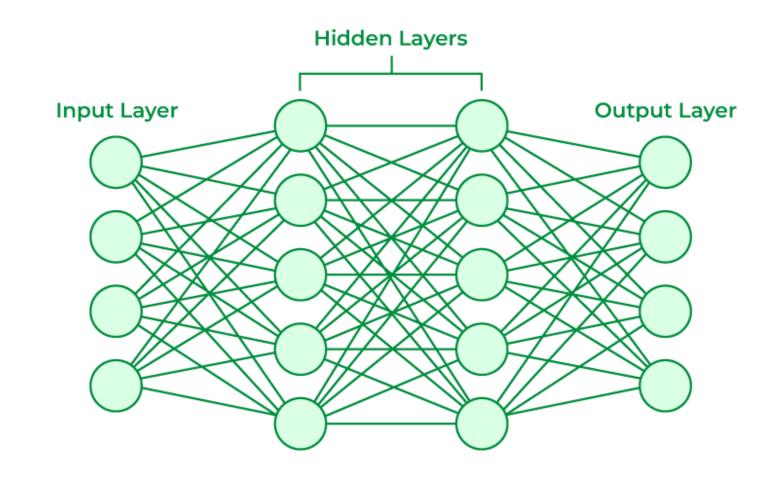
- Neural networks are exceptionally capable at pattern recognition
- In *Neural Algorithmic Reasoning* networks should *execute algorithms* vice mimic memorized input-output pairs

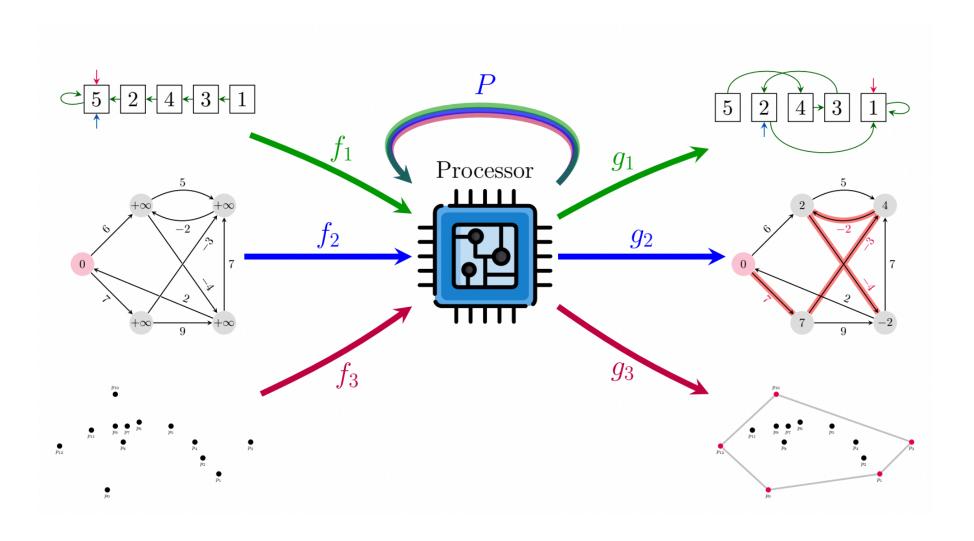




Combinatorial Reasoning

- Neural networks are exceptionally capable at pattern recognition,
- In Neural Algorithmic Reasoning networks should execute algorithms vice mimic memorized input-output pairs
- **Problem:** Standard softmax-dot product attention mechanisms live in smooth Euclidean space while combinatorial algorithms live in *piecewise-linear*, *polyhedral spaces*





Why Does Softmax Fail?

$$\alpha_{ij} = \operatorname{softmax}_{\tau}(\langle \mathbf{q}i, \mathbf{k}_{j} \rangle) := \frac{\exp(\langle \mathbf{q}_{i}, \mathbf{k}_{j} \rangle / \tau)}{\sum_{t=1}^{N} \exp(\langle \mathbf{q}_{i}, \mathbf{k}_{t} \rangle / \tau)}$$

Logit *blurriness* or *Dispersion* starts to happen ==> Attention Fading

Leads to soft/blurry rather than decisive selections,

hampering tasks that require deterministic decisions

Why Does Softmax Fail?

$$\alpha_{ij} = \operatorname{softmax}_{\tau}(\langle \mathbf{q}i, \mathbf{k}_{j} \rangle) := \frac{\exp(\langle \mathbf{q}_{i}, \mathbf{k}_{j} \rangle / \tau)}{\sum_{t=1}^{N} \exp(\langle \mathbf{q}_{i}, \mathbf{k}_{t} \rangle / \tau)}$$

Logit *blurriness* or *Dispersion* starts to happen ==> Attention Fading

Leads to soft/blurry rather than decisive selections,

hampering tasks that require deterministic decisions

What do we need?

Algorithmic alignment \rightarrow Smart Inductive Bias from combinatorial algorithms

Algorithmic Alignement

What do we need?

- 1. Combinatorial Algorithms require hard argmax/argmin operations
- 2. Captures the piecewise-linear geometry (decision boundary) of combinatorial problems
 - 3. Robust wrt noise and perturbations (e.g adversarial attacks)

Algorithmic Alignement

What do we need?

- 1. Combinatorial Algorithms require hard argmax/argmin operations
- 2. Captures the piecewise-linear geometry (decision boundary) of combinatorial problems
 - 3. Robust wrt noise and perturbations (e.g adversarial attacks)

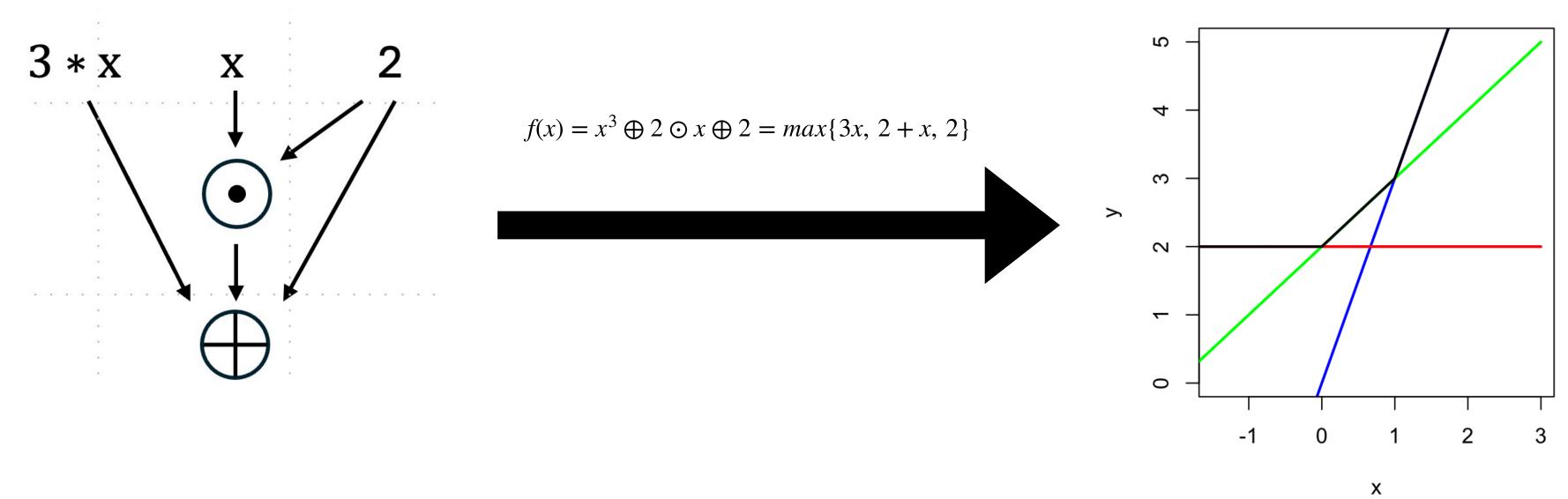
These three pillars are exactly the native properties of Tropical Algebraic Geometry

- (max, +) are the basic operations
- Polyhedral and piecewise-linear boundaries are the geometry
 - Robustness to perturbations is built in

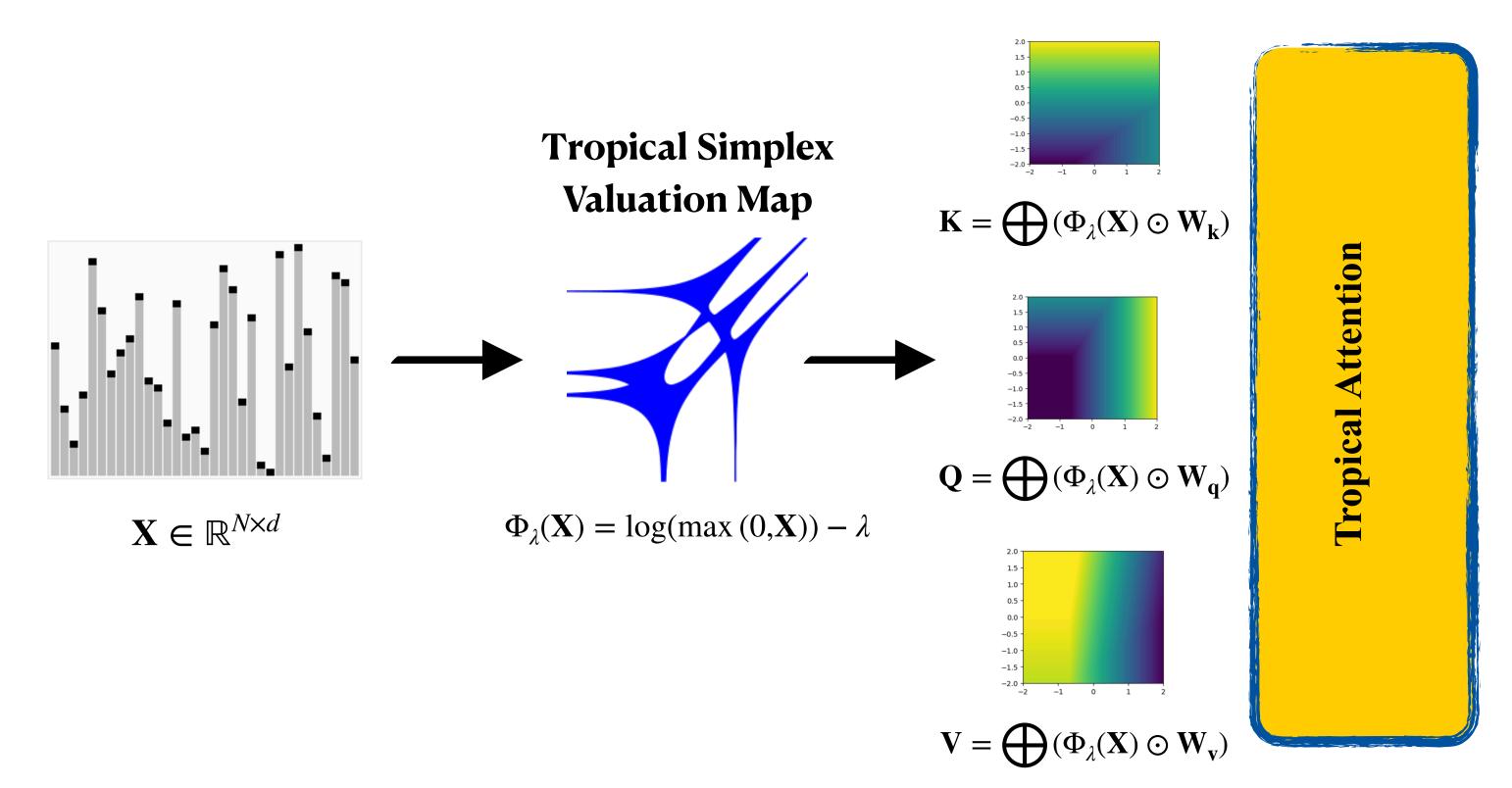
Algorithmic Alignement

What do we need?

- 1. Combinatorial Algorithms require hard argmax/argmin operations
- 2. Captures the piecewise-linear geometry (decision boundary) of combinatorial problems
 - 3. Robust wrt noise and perturbations (e.g adversarial attacks)



Tropical Attention

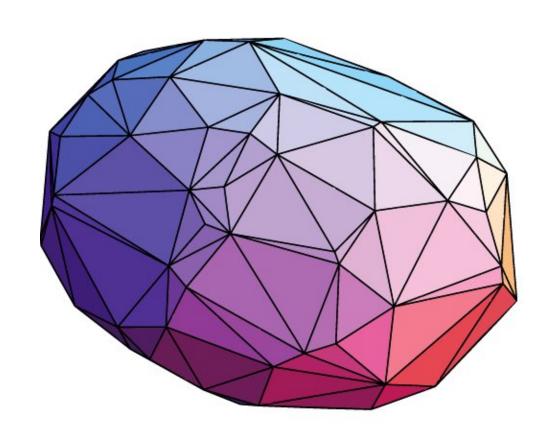


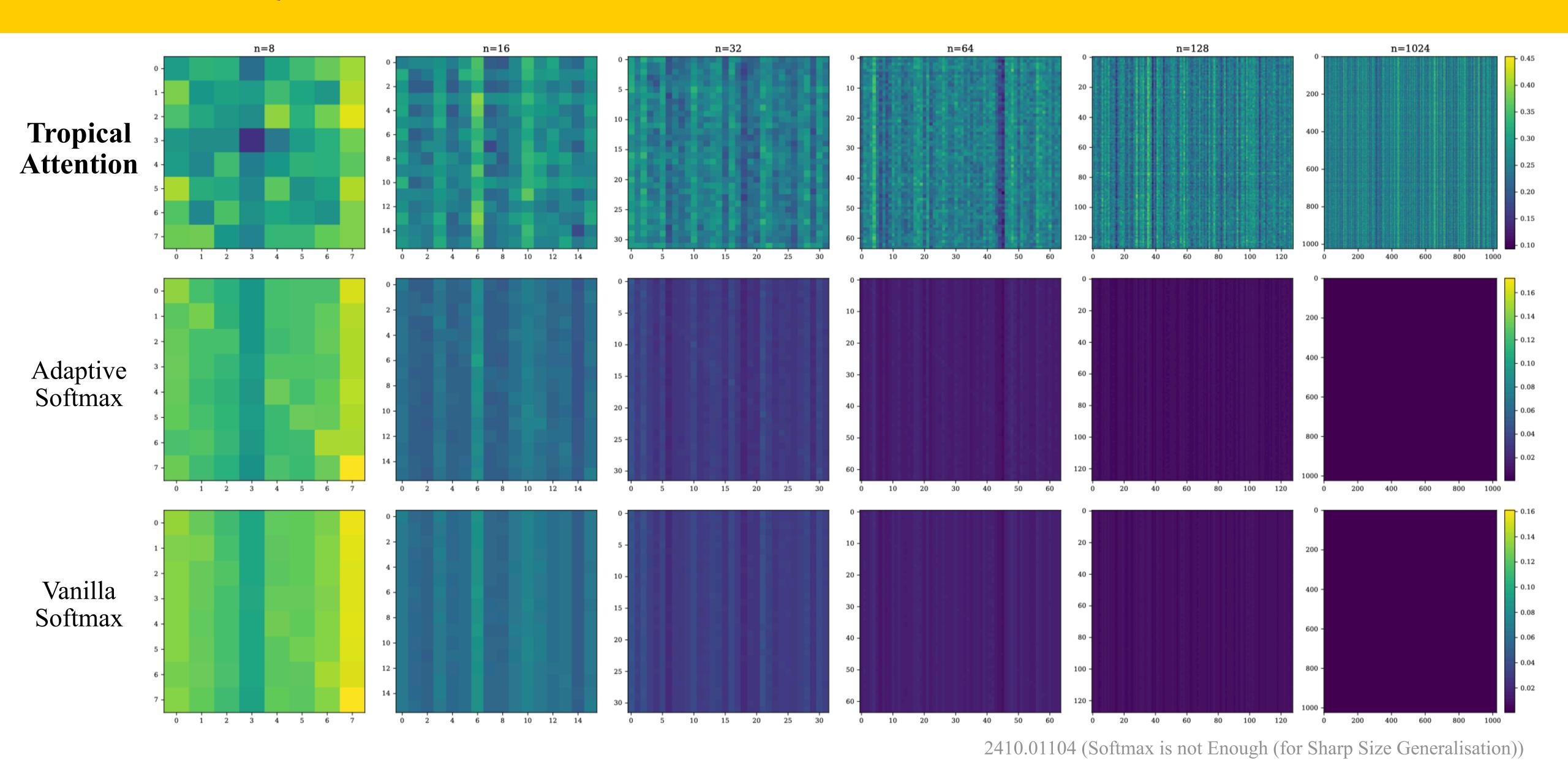
$$d_{\mathbb{H}}(\mathbf{K}, \mathbf{Q}) = \max(\mathbf{K} - \mathbf{Q}) - \min(\mathbf{K} - \mathbf{Q})$$

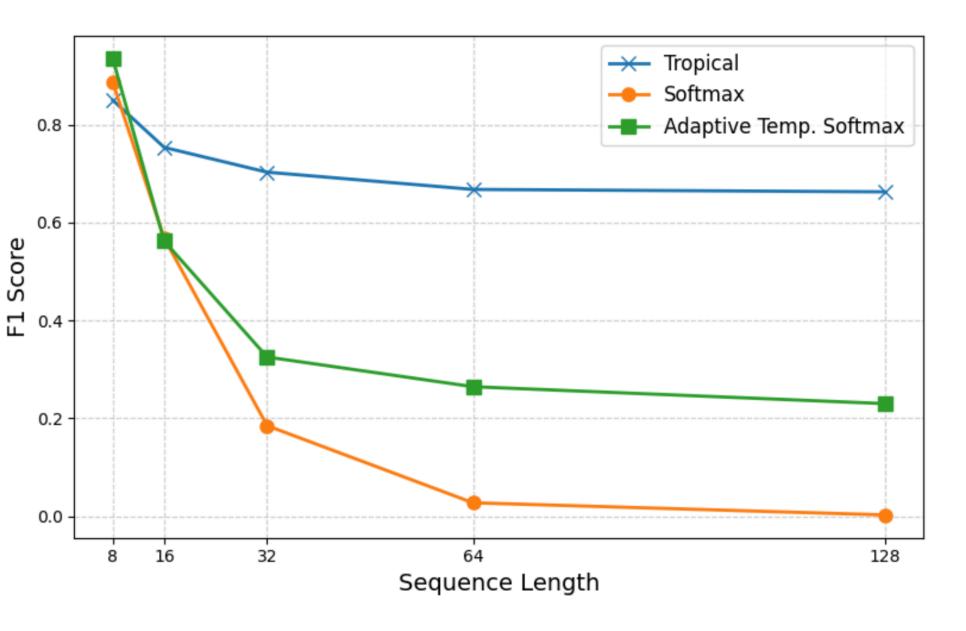
$$\mathbf{C} = \bigoplus (-d_{\mathbb{H}} \odot \mathbf{V}) = \max (-d_{\mathbb{H}} + \mathbf{V})$$

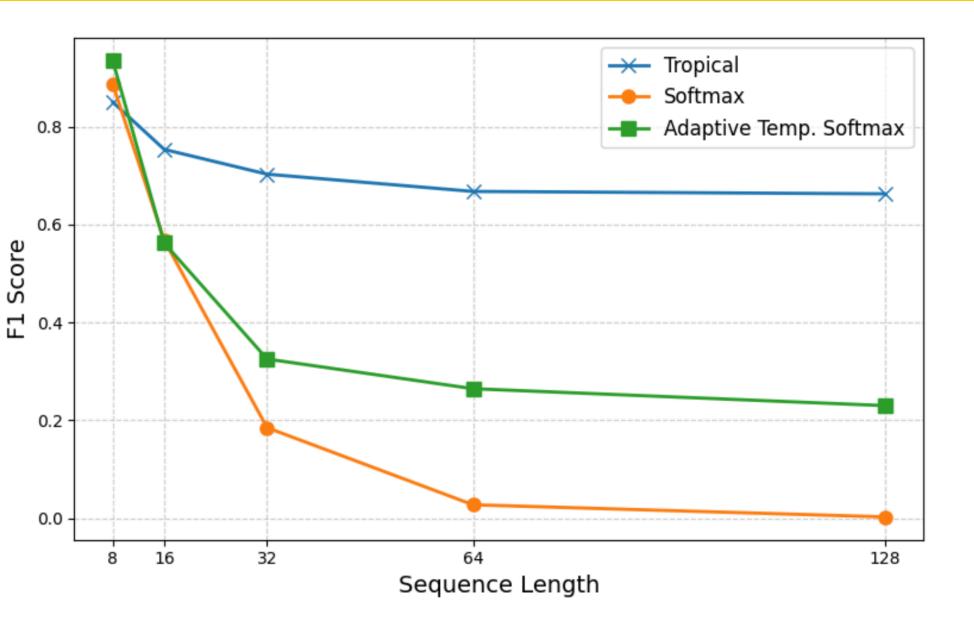
attention becomes:

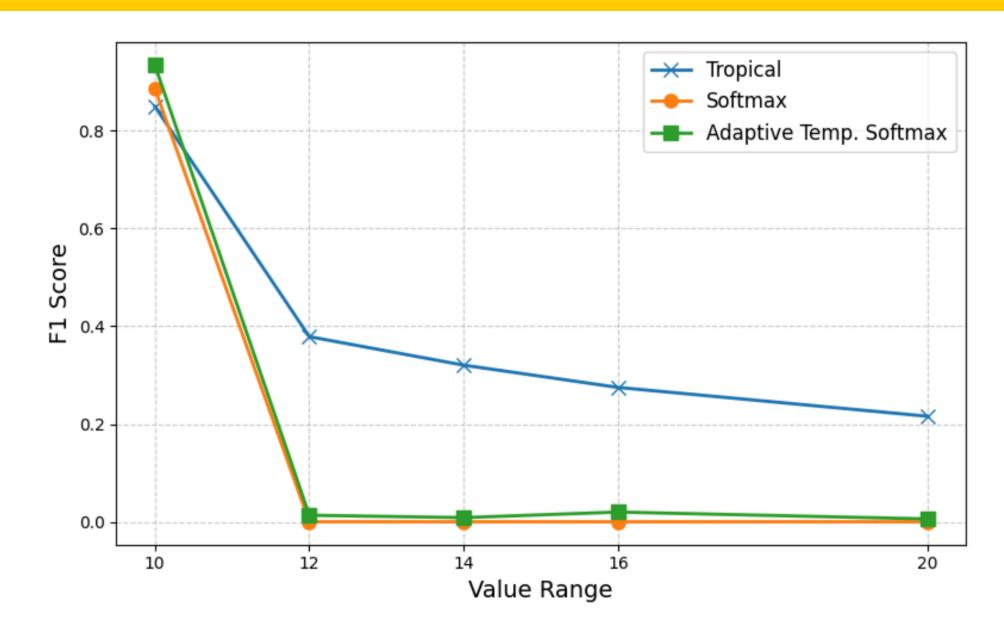
"pick the value that best aligns projectively with the query."

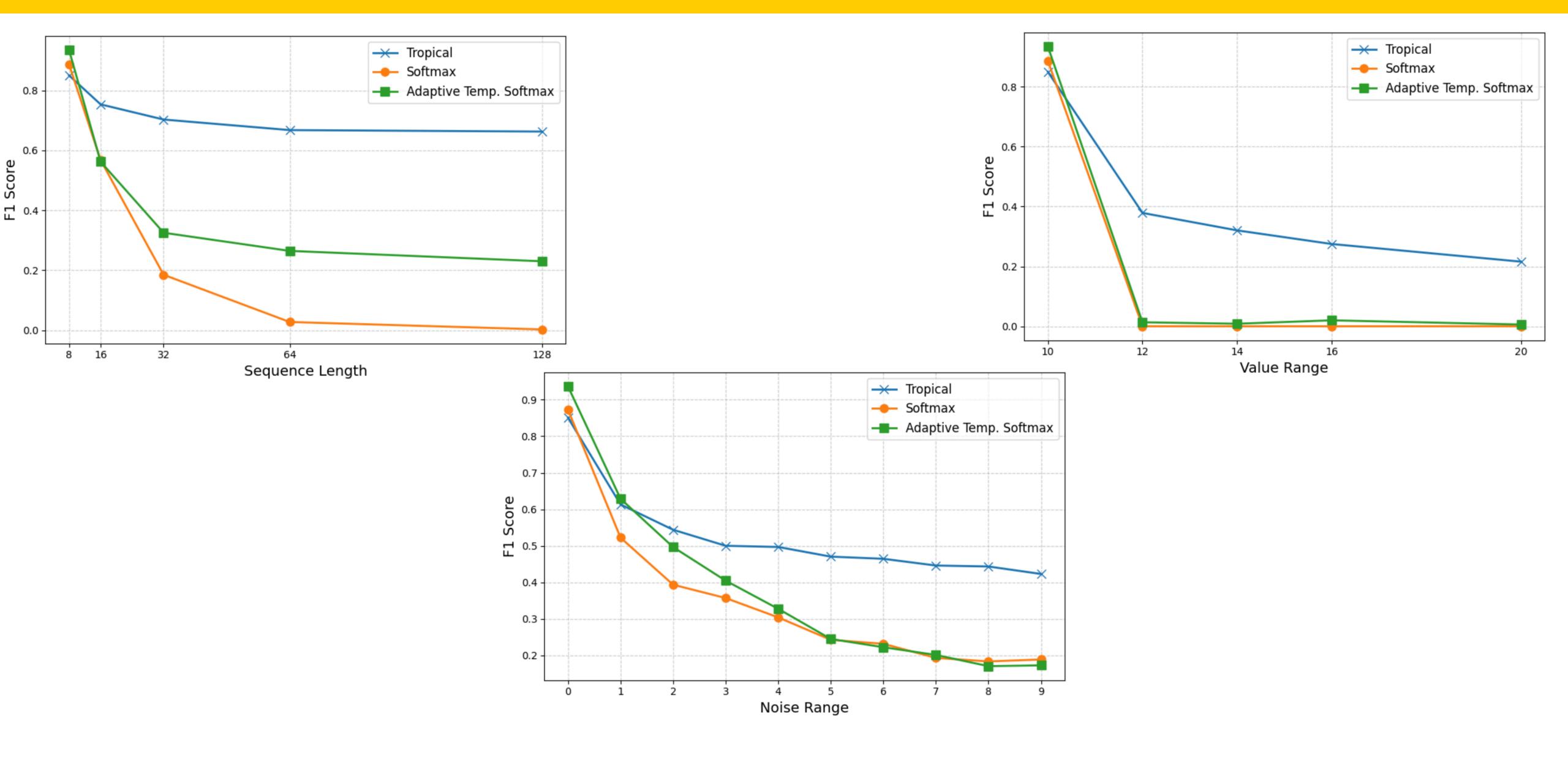












11 CO tasks

- 1. Quickselect: Find the k-th smallest elements in a set. (Classification)
- 2. **3SUM (Decision):** Decide if there exist a, b, c with a + b + c = T. (Classification)
- 3. Balanced Partition: Split numbers into two subsets with equal sum. (NP-complete Classification)
- 4. Convex Hull: Given 2D points, identify the hull. (Classification)
- 5. Subset Sum (Decision): Decide if some subset sums to a target T. (NP-complete Classification)
- 6. **0/1 Knapsack:** Maximize value under capacity with binary item choices. (NP-hard Classification)
- 7. Fractional Knapsack: Items can be taken fractionally; predict optimal value. (Regression)
- 8. **Floyd–Warshall:** All-pairs shortest paths on a weighted undirected graph. (Both Regression and Classification)
- 9. **Strongly Connected Components (SCC):** Decompose a directed graph with community structure; predict pairwise same-component. (Classification)
- 10. Bin Packing: Pack items into the fewest bins of fixed capacity. (NP-hard Classification)
- 11. **Min Coin Change:** Minimum number of coins to reach a target T with each coin used at most once. (Classification)

Results

Algorithmic Tasks	Length OOD			Value OOD			Perturbative Noise		
	Vanilla	Adaptive	Tropical	Vanilla	Adaptive	Tropical	Vanilla	Adaptive	Tropical
CONVEXHULL	42.752.06	48.250.96	97.001.15	22.753.59	23.773.10	34.251.71	90.752.22	91.002.16	96.002.16
KNAPSACK	41.061.76	39.182.59	60.002.09	38.873.43	26.921.33	49.672.01	67.853.19	68.363.51	74.673.13
QUICKSELECT	4.665.98	22.892.49	77.063.78	74.222.30	74.301.99	71.103.11	33.877.11	34.824.79	57.225.01
BINPACKING	60.752.49	64.251.09	66.011.55	67.263.70	74.231.51	78.541.89	55.385.10	60.643.92	61.194.33
SCC	51.303.91	56.502.22	89.253.49	78.513.08	81.382.62	74.865.01	70.005.98	71.331.96	69.864.17
SUBSETSUM	21.132.45	22.755.25	87.506.45	34.756.60	28.5010.12	79.255.38	3.751.50	3.001.63	72.7510.01
BALANCEDPARTITION	80.552.91	91.905.52	96.733.50	63.404.29	56.571.18	55.765.63	51.062.66	57.061.08	57.291.33
3SUM	80.000.82	79.750.50	82.751.59	26.003.16	26.253.50	22.002.16	47.509.47	49.259.22	65.253.59
MINCOINCHANGE	9.251.86	17.982.29	42.521.47	23.644.07	2.201.13	$\underline{33.18}5.64$	22.122.75	18.444.49	33.754.89
FLOYD-WARSHALL	12.814.03	1.310.36	0.810.08	87.685.65	56.303.04	55.304.36	7.543.63	5.292.56	4.391.62
FRACTIONALKNAPSACK	0.880.06	0.860.08	0.660.10	0.240.12	0.170.03	$\underline{0.08}0.03$	0.050.02	0.030.01	$\underline{0.02}0.01$

Experimental Saga: LRA benchmark

Long Range Arena (LRA) benchmark,

A standard for testing transformers on long-sequence tasks across text, image, and math domains.

ListOps: Calculating the result of nested mathematical operations in parentheses (e.g min[max[1,2,3],4,5] = 3.)

Text Classification: The IMDB sentiment analysis task

Document Retrieval: Finding a similarity score between two documents

Image Classification: The CIFAR-10 image classification task

Pathfinder: To identify whether two white points in a black background are connected by a path of dashed white lines.

Models	ListOps	Text	Retrieval	Image	Pathfinder	Avg.	Complexity
Transformer	36.37	64.27	57.46	42.44	71.40	54.39	$\mathcal{O}(n^2)$
Longformer	35.63	62.85	56.89	42.22	69.71	53.46	$\mathcal{O}(n)$
Linformer	35.70	53.94	52.27	38.56	76.34	51.36	$\mathcal{O}(n)$
Reformer	37.27	56.10	53.40	38.07	68.50	50.67	$\mathcal{O}(n)$
Performer	18.01	65.40	53.82	42.77	77.50	51.41	$\mathcal{O}(n)$
AdaptiveSoft.	47.15	<u>75.52</u>	79.56	51.58	80.94	66.95	$\mathcal{O}(n^2)$
Elliptical	37.8	65.6	80.3	40.2	73.2	61.24	$\mathcal{O}(n^2)$
Fourierformer	40.73	75.02	<u>85.35</u>	53.17	83.43	67.54	$\mathcal{O}(n \log n)$
MEGA	<u>63.14</u>	90.43	91.25	90.44	<u>96.01</u>	86.25	$\mathcal{O}(n \log n)$
Tropical	68.65	70.13	64.82 ¹⁷	60.04	97.33	72.79	$O(n^2)$

Discussion

- Tropical Attention brings:
 - OOD length and value generalization performance while being robust to heavy noise
 - **Expressivity:** Multi-Head Tropical Attention is a Tropical circuit that universally approximates (max, +) Dynamic Programs. (Theorem 3.2)
 - Preserves the piecewise-linear geometry of combinatorial problems
 - A shallow network provides a one-shot solution (sufficient) via the tropical transitive closure
 - **Sharp attention maps** that upholds algorithmic reasoning beyond the training data ==> Size *Invariance*
- Open Horizons:
 - Tropical Attention directly on Graphs (Tropical GNN)?
 - Applications in tasks with combinatorial flavour?

