

ENMA: Tokenwise Autoregression for Generative Neural PDE Operators

Armand Kassaï Koupaï ¹, Lise Le Boudec¹, Louis Serrano¹, Patrick Gallinari^{1,2}

¹Sorbonne Université, CNRS, ISIR, 75005 Paris, France

²Criteo Al Lab, Paris, France

★ Solving parametric PDEs

 $egin{align} \mathcal{N}\left[oldsymbol{u};oldsymbol{c},oldsymbol{f}
ight](x,t) &= 0, & ext{for } (x,t) \in \Omega imes (0,T], \ \mathcal{B}\left[oldsymbol{u};oldsymbol{b}
ight](x,t) &= 0, & ext{for } (x,t) \in \partial\Omega imes [0,T], \ oldsymbol{u}(x,0) &= oldsymbol{u}^0(x), & ext{for } x \in \Omega, \ \end{pmatrix}$

c: PDE coefficients

f: forcing terms

b: boundary conditions

u⁰: initial condition

★ Solving parametric PDEs

$$\begin{split} \mathcal{N}\left[\boldsymbol{u};\boldsymbol{c},\boldsymbol{f}\right](x,t) &= 0, & \text{for } (x,t) \in \Omega \times (0,T], \\ \mathcal{B}\left[\boldsymbol{u};\boldsymbol{b}\right](x,t) &= 0, & \text{for } (x,t) \in \partial \Omega \times [0,T], \\ \boldsymbol{u}(x,0) &= \boldsymbol{u}^0(x), & \text{for } x \in \Omega, \end{split}$$

c: PDE coefficients

f: forcing terms

 \star

b: boundary conditions

u⁰: initial condition

- Modeling complex/chaotic physical behavior
- Modeling uncertainty
- Partially observed systems

★ Solving parametric PDEs

 $\mathcal{N}\left[oldsymbol{u};oldsymbol{c},oldsymbol{f}
ight](x,t)=0, & ext{for } (x,t)\in\Omega imes(0,T], \ oldsymbol{\mathcal{B}}\left[oldsymbol{u};oldsymbol{b}
ight](x,t)=0, & ext{for } (x,t)\in\partial\Omega imes[0,T], \ oldsymbol{u}(x,0)=oldsymbol{u}^0(x), & ext{for } x\in\Omega, \end{cases}$

c: PDE coefficients
f: forcing terms
b: boundary conditions
u⁰: initial condition

Deterministic neural surrogate

- Modeling complex/chaotic physical behavior
- Modeling uncertainty

 \star

Partially observed systems

Generative neural surrogate

Diffusion

- + Continuous at pixel level
- + Uncertainty quantification
- Expensive training stage
- Requires a high number of denoising steps

Auto-regressive

- + In-context learning
- + Causality aligned generation
- Requires quantization
- Uncalibrated uncertainty quantification

How to create a generative model for PDE solving that keeps the advantages and consistency of autoregressive modeling while being continuous in space?

★ Solving parametric PDEs

 $egin{align} \mathcal{N}\left[oldsymbol{u};oldsymbol{c},oldsymbol{f}
ight](x,t) &= 0, & ext{for } (x,t) \in \Omega imes (0,T], \ \mathcal{B}\left[oldsymbol{u};oldsymbol{b}
ight](x,t) &= 0, & ext{for } (x,t) \in \partial\Omega imes [0,T], \ oldsymbol{u}(x,0) &= oldsymbol{u}^0(x), & ext{for } x \in \Omega, \ \end{pmatrix}$

c: PDE coefficients
f: forcing terms
b: boundary conditions
u⁰: initial condition

Deterministic neural surrogate

- Modeling complex/chaotic physical behavior
- Modeling uncertainty

 \star

Partially observed systems

Generative neural surrogate

Diffusion

- + Continuous at pixel level
- + Uncertainty quantification
- Expensive training stage
- Requires a high number of denoising steps

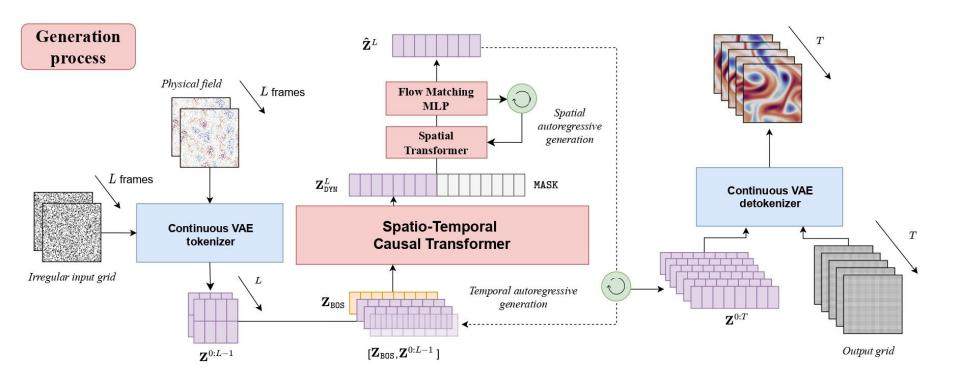
Auto-regressive

- + In-context learning
- + Causality aligned generation
- Requires quantization
- Uncalibrated uncertainty quantification

We propose:

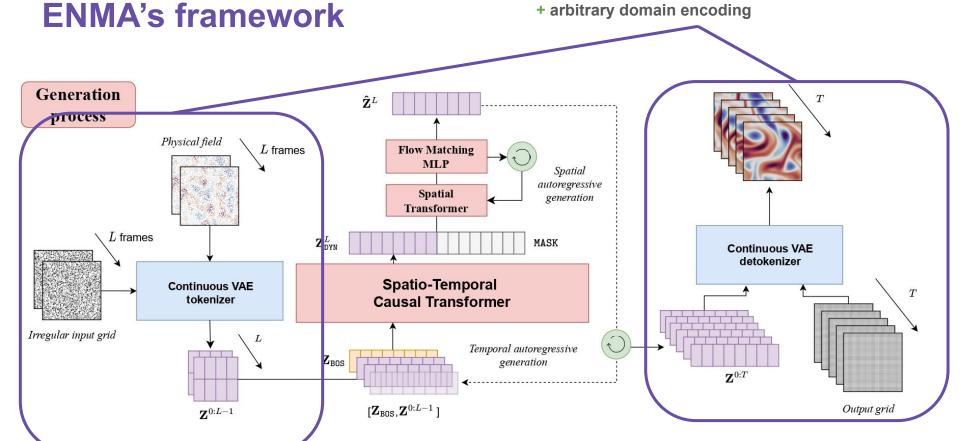
ENMA

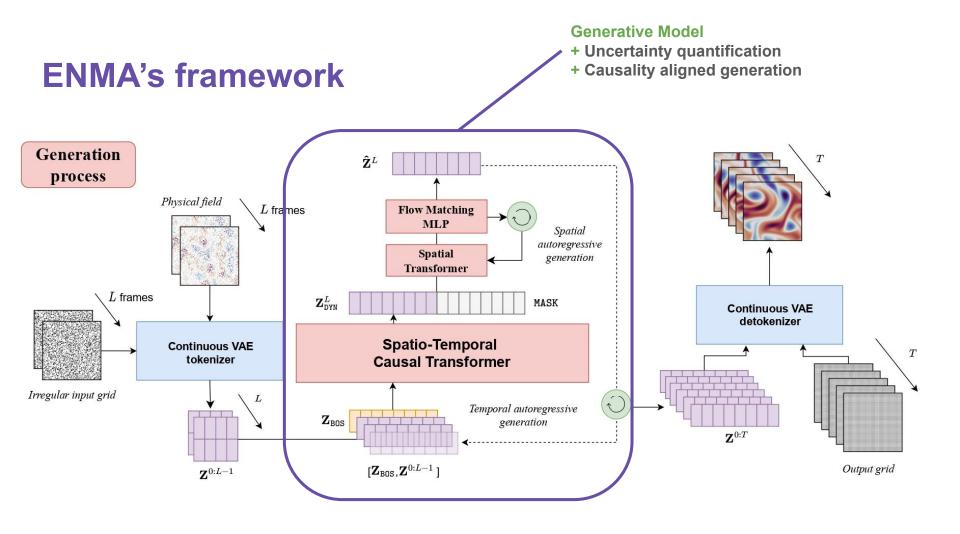
ENMA's framework



Causal & continuous Encoder/decoder

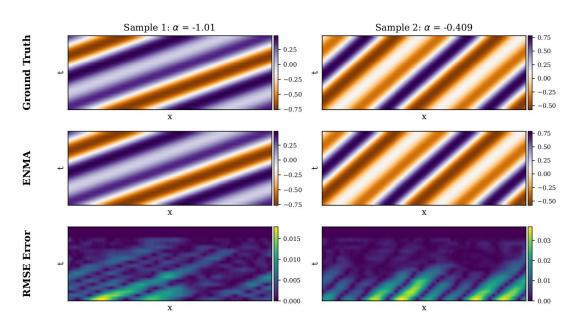
- + Continuous at pixel level
- + arbitrary domain encoding





Some results on the Advection PDE

ENMA vs Ground Truth for 1D PDEs



More results in the paper!

★ Experiment on the encoder/decoder

$\downarrow \mathcal{X}_{ ext{te}}$	$\textbf{Dataset} \rightarrow$	Advection			
* . •te	$\mathbf{Model}\downarrow$	Reconstruction	Time-stepping	Compression rate	
$\pi = 100\%$	OFormer GINO AROMA CORAL ENMA	1.70e-1 3.15e-1 <u>5.41e-3</u> 1.34e-2 1.83e-3	1.11e+0 8.55e-1 2.23e-1 9.64e-1 1.64e-1	×0.25 ×2 ×2 ×2 ×2 ×4	
$\pi = 50\%$	OFormer GINO AROMA CORAL ENMA	1.79e-1 3.21e-1 <u>2.34e-2</u> 7.57e-2 4.60e-3	1.11e+0 8.64-1 2.29e-1 9.74e-1 1.72e-1	- - - -	
$\pi=20\%$	OFormer GINO AROMA CORAL ENMA	2.50e-1 3.54e-1 1.67e-1 4.77e-1 3.05e-2	1.13e+0 9.11e-1 <u>3.21e-1</u> 1.06e+0 3.13e-1	- - - -	

★ Experiment on the generative process

Setting ↓	$Dataset \rightarrow$	Advection	
~ -	$\mathbf{Model}\downarrow$	In-D	Out-D
	FNO	2.47e-1	7.95e-1
	BCAT	5.55e-1	9.23e-1
Temporal Conditioning	AVIT	1.64e-1	5.02e-1
	AR-DiT	2.36e-1	8.56e-1
	Zebra	2.04e-1	1.39e+0
	ENMA	3.95e-2	<u>5.30e-1</u>
	In-Context ViT	1.15e+0	1.20e+0
Initial Value Problem	[CLS] ViT	1.15e+0	1.36e+0
ililiai value Flobiciii	Zebra	3.16e-1	1.47e+0
	ENMA	2.02e-1	8.07e-1

More about ENMA!

Paper

Code

ENMA's generative training and inference

