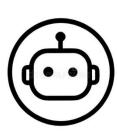
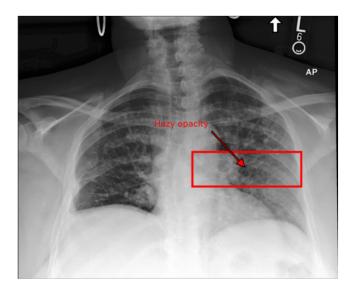
CURV: Coherent Uncertainty-Aware Reasoning in Vision-Language Models for X-Ray Report Generation

Ziao Wang^{1,2}, Sixing Yan¹, Kejing Yin¹*, Xiaofeng Zhang³, William K. Cheung¹

¹Department of Computer Science, Hong Kong Baptist University
²Institute of Systems Medicine and Health Sciences, Hong Kong Baptist University
³Department of Computer Science, Harbin Institute of Technology



Vision Language Models For X-Ray Report Generation

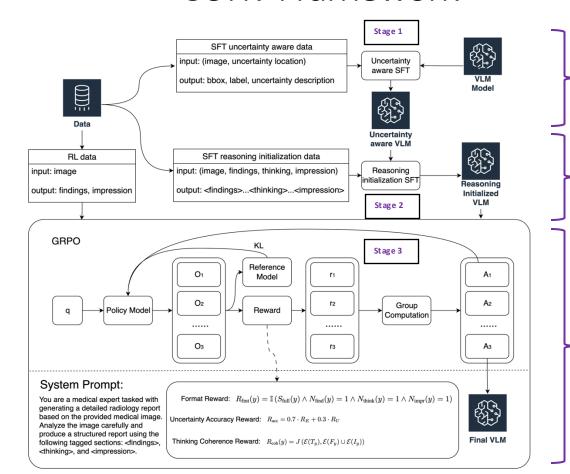

Key Challenges:

- Lacks Uncertainty: Models don't say "likely" or "possible".
- "Black Box" Reasoning: No clear logic from finding to impression.
- Reduced Clinical Trust: Clinicians can't trust what they can't understand.

Documenting Uncertainties in X-Ray Reports

(a) Chest X-ray image

Structural Uncertainty (Findings): "Pulmonary nodules in the left upper lobe are also not completely characterized on this study. However, in addition, there is a more hazy widespread opacity projecting over the left mid upper lung which could be compatible with a coinciding pneumonia."


Semantic Uncertainty (Impression): "Increasing left lung opacification which may reflect pneumonia superimposed on metastatic disease, although other etiologies such as lymphangitic pattern of metastatic spread could be considered. CT may be helpful to evaluate further if needed clinically."

(b) Corresponding uncertain expressions from the radiology report.

CURV Framework

Stage 1: Uncertainty Modeling

Stage 2: Reasoning Initialization

Stage 3: RL with Multicomponent Rewards

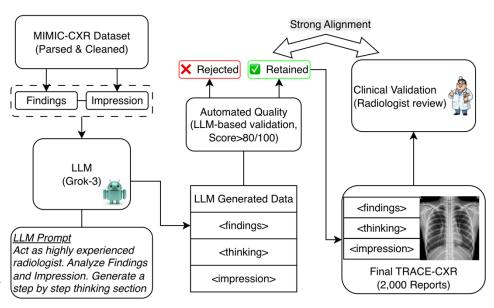
Stage 1: Uncertainty Modeling

- Connect uncertainty phrase to specific bounding boxes
- Model learns to identify regions, assign anatomical labels, and express appropriate structural uncertainty

```
\mathcal{L}_{	ext{uncertainty}} = -\sum_{(I, p, Y_{gt}) \in \mathcal{D}} \log \pi_{	heta}(	ext{seq}(Y_{gt})|I, p)
```

```
"image": "cxr/02aa804e-bde0afdd-112c0b34-7bc16630-
4e384014.jpg",
  "conversations": [
      "from": "human",
      "value": "<image>\nDetect all anotomical objects in the
image that most likely contain uncertainties and return their
locations in the form of coordinates along with their organ label
and uncertainty descriptions in JSON format."
      "from": "gpt",
      "value": "{\n"bbox 2d": [121, 104, 180, 162], "label":
 "left lower lung zone", "uncertainty": "Bilateral nodular
opacities that most likely represent nipple shadows." "\n}"
```


Stage 2: Reasoning Initialization & TRACE-CXR Dataset

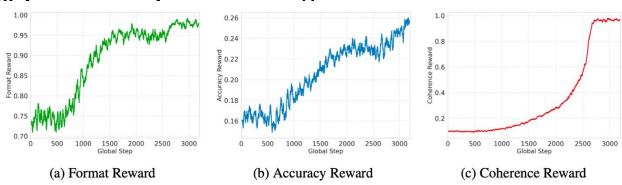

- TRACE-CXR: Novel dataset with 2,000
 X-ray reports augmented with LLMgenerated explicit 'Thinking' sections
- Model fine-tuned to produce structured tripartite output:

Findings → Observations from the X-ray

Thinking → Reasoning pathway

Impression → Clinical conclusions

$$\mathcal{L}_{ ext{reasoning}} = -\sum_{(I, p, Y_{ ext{structured}}) \in \mathcal{D}_{ ext{reason}}} \log \pi_{ heta}(ext{seq}(Y_{ ext{structured}}) | I, p)$$



Stage 3: RL with Multi-Component Rewards

- Based on only <findings> and <impression> but not <thinking>
- Discover a better reasoning path guided by the reward signals.
 - R_{fmt} (Format Adherence): Ensures the tripartite structure.
 - R_{acc} (Accuracy): Measures medical accuracy and uncertainty.
 - R_{coh} (Coherence): Rewards logical coherence.

Experimental Setup & Datasets

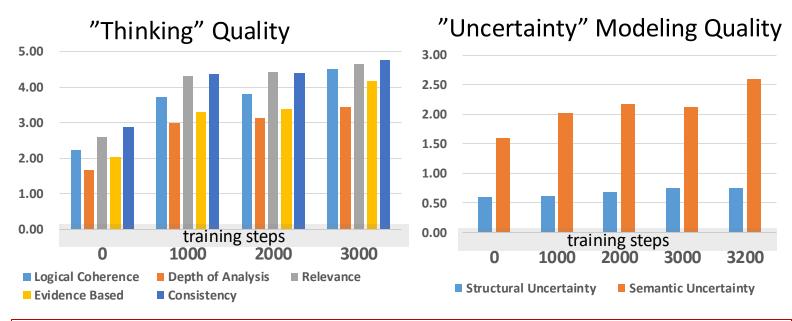
- Model & Training: Qwen-2.5-VL-3B (3B parameters)
 - Trained on 4xA100 GPUs (~100 hours)
 - Batch size: 16, Learning rate: 1×10 -6
- Datasets:
 - MIMIC-CXR base (227,835 reports)
 - Uncertainty-annotated set (112,111 samples)
 - TRACE-CXR reasoning set (2,000 samples)
- Evaluation:
 - Text: BLEU-1/2/3/4, METEOR, ROUGE-L
 - Clinical: CheXbert, RadGraph F1
 - LLM-based: Reasoning & uncertainty scoring

Performance Evaluation

- CURV achieves state-of-the-art on generation and clinical metrics
- ✓ CURV outperforms Gemini-2.5 pro
- CURV (3B) outperforms 7B-models
- OOD experiments on IU X-ray

Results on MIMIC-CXR dataset

Model	BLE U2	BLE U3	BLE U4	METEOR	ROUGEL	gritlm	chexbertf1	radgraphf1
llava-1.5-7b	7.46	2.81	1.25	19.16	18.36	44.25	38.54	4.95
llava-1.5-7b-sft-cxr	15.06	9.43	6.13	25.71	28.09	50.28	51.51	13.06
Huatuo-GPT-Vision-7B	9.42	4.64	1.93	26.01	20.78	47.32	48.62	9.06
Maira2	14.12	9.01	6.14	26.78	28.65	47.48	46.53	17.05
Qwen2.5-VL-3B	5.42	2.08	0.89	20.81	15.23	44.57	37.66	4.66
gemini2.5-pro	5.20	2.25	1.05	21.19	15.01	40.41	48.45	7.71
CURV_stage1	7.08	3.33	1.61	23.47	19.07	45.15	30.75	9.95
CURV_stage2	5.22	2.43	1.10	18.57	14.59	42.76	26.83	6.03
CURV	15.58	9.85	6.18	30.43	31.19	50.48	57.12	19.54


Results on **IU X-ray** dataset

Model	BLE U2	BLE U3	BLE U4	METEOR	ROUGEL	gritlm	chexbertf1	radgraphf1
Ilava-1.5-7b	6.60	3.00	1.40	19.65	17.48	45.78	46.81	8.76
llava-1.5-7b-sft-cxr	12.95	8.03	5.20	23.24	26.40	46.21	53.33	10.31
Huatuo-GPT-Vision-7B	10.70	6.28	2.81	31.02	23.42	50.22	67.07	13.96
Maira2	15.60	9.64	6.03	25.52	31.18	54.18	70.75	24.01
Qwen2.5-VL-3B	5.05	2.28	1.05	21.65	15.01	45.95	49.47	6.26
CURV_stage1	6.24	3.18	1.57	23.64	18.18	46.76	40.30	12.13
CURV_stage2	5.32	2.75	1.27	18.64	13.93	44.46	33.67	7.28
CURV	18.76	12.08	6.86	38.30	39.08	54.89	74.36	25.65

LLM-based Evaluation

Improvement on thinking and uncertainty modeling capabilities.

Conclusion & Impact

- CURV generates more trustworthy X-Ray reports via Reasoning with Uncertainty Awareness
- CURV 3B model outperforms other 7B models, proving effectiveness
- TRACE-CXR dataset will be released to the public
- Limitations
 - Performance relying on the quality of the initial curated datasets
 - Generalization to other medical imaging requires further investigation
 - A large-scale clinical validation are still needed.

Thank You!

Code and Dataset

Contact Me on Telegram