KSP: Kolmogorov-Smirnov metric-based Post-Hoc Calibration for Survival Analysis

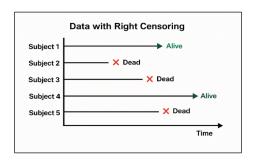
Jeongho Park¹, Daheen Kim¹, Cheoljun Kim², Hyungbin Park², Sangwook Kang¹, Gwangsu Kim^{2,*}

¹Department of Statistics and Data Science, Yonsei University ²Department of Statistics, Jeonbuk National University

39th Conference on Neural Information Processing Systems

Introduction

- Survival analysis aims to estimate the probability that an event (e.g., death) occurs after a given time.
- Utilizing DNN has become an essential part of the survival analysis
- A key challenge is handling censoring and balancing discrimination with calibration.



Notation

- T: event time, C: (right) censoring time
- $Y = \min\{T, C\}$: observed time
- $\delta = \mathbb{I}(T \leq C)$: censoring indicator
- z: vector of covariates
- $F(\cdot \mid \mathbf{z})$: conditional CDF (cumulative distribution function) of T
- $S(\cdot \mid \mathbf{z}) = 1 F(\cdot \mid \mathbf{z})$: survival function

D-calibration (Distributional calibration)

- How can we measure whether our estimated survival function is calibrated or not?
 - Use the property of CDF
 - If $T \sim F$, then $F(T) \sim \text{Unif}[0,1]$.
 - ullet For T>C, we get $F\left(T\mid oldsymbol{z}
 ight)\sim \mathsf{Unif}\left[F\left(C\mid oldsymbol{z}
 ight)$, 1
 ight]

•
$$\mathbb{E}_{Y,\delta,\mathbf{z}}\left[\mathbb{I}\left(F\left(Y\mid\mathbf{z}\right)\leq x\right)\left\{\delta+(1-\delta)\frac{x-F(Y\mid\mathbf{z})}{1-F(Y\mid\mathbf{z})}\right\}\right]=x,\ \forall x\in[0,1]$$

 A key is how to measure the difference between both sides of the equation.

Kolmogorov-Smirnov metric

$$\mathbb{E}_{Y,\delta,\mathbf{z}}\left[\mathbb{I}\left(F\left(Y\mid\mathbf{z}\right)\leq x\right)\left\{\delta+(1-\delta)\frac{x-F\left(Y\mid\mathbf{z}\right)}{1-F\left(Y\mid\mathbf{z}\right)}\right\}\right]=x$$

- Previous approaches used bin-based difference.
- We adopt the Kolmogorov-Smirnov (KS) metric.
- Let

$$\tilde{F}(x) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}\left(\hat{F}_{\theta}\left(Y_{i} \mid \mathbf{z}_{i}\right) \leq x\right) \left\{\delta_{i} + (1 - \delta_{i}) \frac{x - \hat{F}_{\theta}\left(Y_{i} \mid \mathbf{z}_{i}\right)}{1 - \hat{F}_{\theta}\left(Y_{i} \mid \mathbf{z}_{i}\right)}\right\}$$

- \hat{F}_{θ} : estimated CDF
- KS-cal= $\sup_{x \in [0,1]} |\tilde{F}(x) x|$

Convergence of KS-cal

Theorem

Under the regularity conditions, $\hat{F}_{\theta} = F$ if and only if $\sup_{x \in [0,1]} |\tilde{F}(x) - x| = o_p(1)$ as $N \to \infty$.

- Minimizing KS-cal guarantees the model is to be calibrated.
- We propose KS-cal based Post-hoc calibration (KSP).

KSP

Algorithm. KSP

- 1: **Input:** Estimated CDFs \hat{F}_{θ} , strictly monotone increasing link function $G:[0,1] \to (-\infty,\infty)$
- 2: Initialize parameters a > 0, $b, \alpha > 0$
- 3: Sort \hat{F}_{θ} for computational efficiency
- 4: while KS-cal not improved do
- 5: Compute transformed CDF: $\hat{F}_{\theta}^* = \left\{ G^{-1} \left(a \cdot G(\hat{F}_{\theta}) + b \right) \right\}^{\alpha}$
- 6: Compute KS-cal on validation set: $\max_{1 \le i \le N} D_j^*$, where D_j^* denotes D_j evaluated using \hat{F}_{θ}^*
- 7: Update (a, b, α) via gradient descent (ADAM) to minimize the KS-cal 8: end while
- 9: Apply final calibrated transformation to the test set using optimized (a, b, α)
- 10: Output: Calibrated CDF \hat{F}_{θ}^*

No

- surrogate loss
- additional nonparametric estimator
- quantile estimation
- sampling procedure
- Yes
 - intuitive and easy to implement
 - preserve time-dependent C-index

Result

Table 1: Summary of pairwise comparisons between post-processing methods. The table shows the number of cases where KSP outperforms its counterpart, is outperformed, or yields a tie. Numbers in parentheses indicate statistically significant differences based on a one-sided *t*-test at the 0.05 level.

Method	C-index	S-cal(20)	D-cal(20)	KS-cal	KM-cal	IBS
KSP	20 (12)	46 (45)	46 (43)	47 (45)	47 (35)	44 (25)
Non-calibrated	18(1)	13 (7)	14(6)	13 (5)	13(10)	16(1)
Ties	22	1	0	0	0	0
KSP	13 (2)	36 (29)	48 (45)	51 (42)	37 (32)	42 (25)
CSD	34(2)	24 (19)	12(10)	9 (8)	23 (19)	18 (10)
Ties	13	0	0	0	0	0
KSP	21 (0)	32 (21)	46 (39)	44 (29)	45 (36)	38 (9)
CSD-iPOT	25(1)	28 (19)	14(13)	16 (11)	15 (10)	22 (10)
Ties	14	0	0	0	0	0

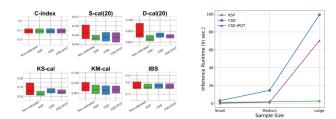


Figure 2: Boxplots of metric values (left) and inference runtime by sample size (right), aggregated across all datasets and models.

Conclusion

- Stength
 - Capture local discrepancies more than quantile-based methods
 - Scalable
- Weakness
 - Sensitive to discretized models
 - Less robust to tied times
- Future research
 - Extend KSP to conditional calibration