

Deno-IF: Unsupervised Noisy Visible and Infrared Image Fusion Method

Han Xu¹ Yuyang Li¹ Yunfei Deng¹ Jiayi Ma² Guangcan Liu^{1*}

¹ School of Automation, Southeast University, Nanjing, China

² Electronic Information School, Wuhan University, Wuhan, China

■ Introduction

> Image Fusion:

It aims to merge the complementary information of source images and generate a single informative fused image with better scene representation.

Background:

In real-world scenarios, challenging environments and the inherent constraints of cost-effective multi-modal devices often degrade image quality with significant noise, posing a critical challenge for noise-robust, high-quality image fusion.

Reflection Information

Thermal

Thermal Radiation Information



Visible (noisy)

Scene

Infrared (noisy)

Motivation

Separate Denoising and Fusion:

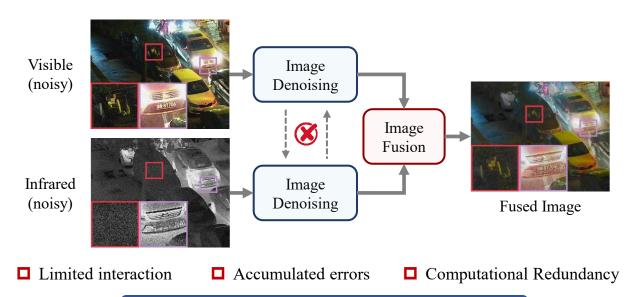
Most methods are tailored for standard scenarios and ineffective at suppressing noise. **Independent denoising-then-fusion approach:**

- Single-source denoising ignores cross-modal complementary information, propagating residual noise or artifacts.
- Disjoint framework is **computationally redundant**.

Supervised Degradation-aware Fusion Methods:

Existing degradations-aware fusion methods learn **fixed mappings** from noisy-clean source image pairs:

Supervised approach restricts the denoising efficacy and generalization.



Unseen Mapping Learned Fixed Mapping ☐ Limited efficacy and generalization **Supervised Approach**

Contributions

➤ An unsupervised noisy visible and infrared image fusion method:

Without the supervision of clean data, it can still realize denoising and fusion simultaneously with fewer parameters, and is robust against various and variable noise conditions.

> A convolutional low-rank optimization module:

As clean data exhibits convolutional low-rankness, we introduce the convolution nuclear norm minimization to decompose clean data from noisy inputs, providing optimization guidance for the network during training.

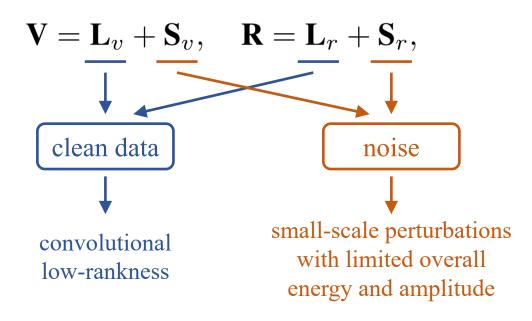
> A joint denoising and fusion network:

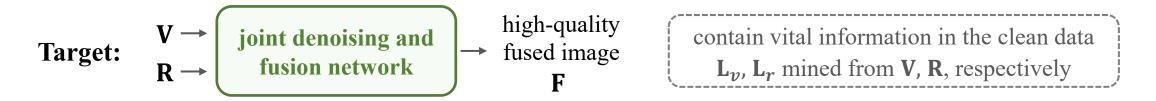
It consists of intra-modal recovery and inter-modal recovery and fusion. It leverages self- and cross-modal attention to approximate guidance. A convolution matrix-based regularization loss further suppresses noise.

Method

Problem Formulation

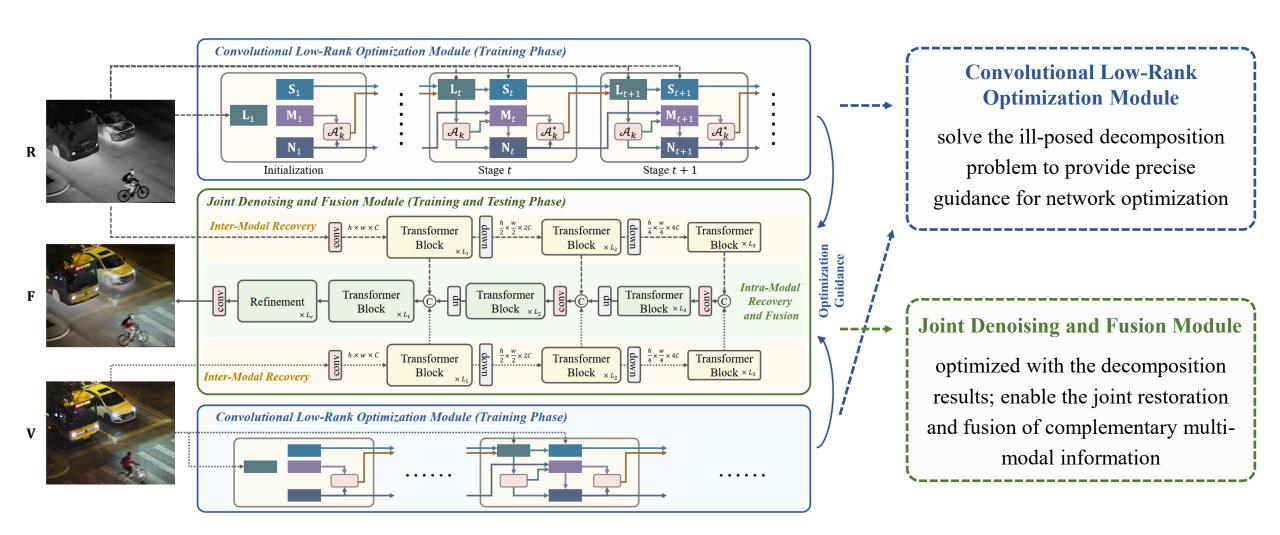
A pair of observed noisy visible and infrared images {V, R} can be decomposed as:





■ Method

Overall Framework



■ Method

Convolutional Low-Rank Optimization Module

We take the decomposition of the noisy infrared image \mathbf{R} as example and decomposition problem can be formulated as:

$$\min_{\mathbf{L},\mathbf{S}} \frac{\|\mathcal{A}_k(\mathbf{L})\|_*}{\downarrow} + \beta \|\mathbf{S}\|_F^2, \quad s.t. \ \mathbf{R} = \mathbf{L} + \mathbf{S}$$

convolution nuclear norm of the clean data

Forbenius norm of noise

These components can be obtained by minimizing the following energy function:

$$E(\mathbf{L}, \mathbf{S}) = \|\mathbf{R} - \mathbf{L} - \mathbf{S}\|_F^2 + \alpha \|\mathcal{A}_k(\mathbf{L})\|_* + \beta \|\mathbf{S}\|_F^2$$

By releasing nuclear norm with $\|\mathbf{X}\|_* = \min_{\mathbf{A}, \mathbf{B}} \frac{1}{2} \|\mathbf{A}\|_F^2 + \frac{1}{2} \|\mathbf{B}\|_F^2$, s.t. $\mathbf{X} = \mathbf{A}\mathbf{B}$, the energy function can be rewritten as:

$$E(\mathbf{L}, \mathbf{S}, \mathbf{M}, \mathbf{N}) = \|\mathbf{R} - \mathbf{L} - \mathbf{S}\|_F^2 + \frac{\alpha}{2} \|\mathbf{M}\|_F^2 + \frac{\alpha}{2} \|\mathbf{N}\|_F^2 + \gamma \|\mathcal{A}_k(\mathbf{L}) - \mathbf{M}\mathbf{N}\|_F^2 + \beta \|\mathbf{S}\|_F^2$$

Method

Convolutional Low-Rank Optimization Module

$$E(\mathbf{L}, \mathbf{S}, \mathbf{M}, \mathbf{N}) = \|\mathbf{R} - \mathbf{L} - \mathbf{S}\|_F^2 + \frac{\alpha}{2} \|\mathbf{M}\|_F^2 + \frac{\alpha}{2} \|\mathbf{N}\|_F^2 + \gamma \|\mathcal{A}_k(\mathbf{L}) - \mathbf{M}\mathbf{N}\|_F^2 + \beta \|\mathbf{S}\|_F^2$$

This problem can be solved by iteratively addressing the subproblems related to L, S, M, N.

With t denotes the iteration step, this problem can be partitioned into the following four **subproblems**:

During the iteration, the **close-form solutions** for these subproblems can be obtained as:

$$\mathbf{L}_{t} = \arg\min_{\mathbf{L}} \|\mathbf{R} - \mathbf{L} - \mathbf{S}_{t-1}\|_{F}^{2} + \gamma \|\mathcal{A}_{k}(\mathbf{L}) - \mathbf{M}_{t-1}\mathbf{N}_{t-1}\|_{F}^{2}, \qquad \qquad \mathbf{L}_{t}$$

$$\mathbf{L}_t = \frac{\mathbf{R} - \mathbf{S}_{t-1} + \gamma \mathcal{A}_k^* (\mathbf{M}_{t-1} \mathbf{N}_{t-1})}{\gamma + 1},$$

$$\mathbf{S}_t = \arg\min_{\mathbf{S}} \|\mathbf{R} - \mathbf{L}_t - \mathbf{S}\|_F^2 + \beta \|\mathbf{S}\|_F^2,$$

$$\mathbf{S}_t = \frac{\mathbf{R} - \mathbf{L}_t}{\beta + 1},$$

$$\mathbf{M}_t = \arg\min_{\mathbf{M}} \frac{\alpha}{2} ||\mathbf{M}||_F^2 + \gamma ||\mathcal{A}_k(\mathbf{L}_t) - \mathbf{M}\mathbf{N}_{t-1}||_F^2,$$

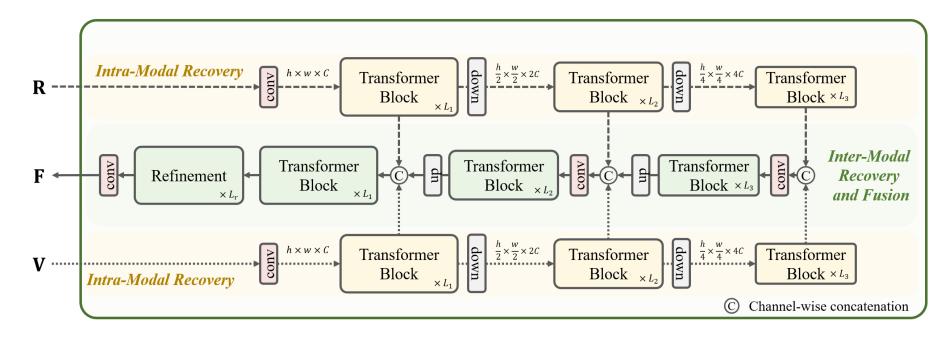
$$\mathbf{M}_t = 2\gamma \mathcal{A}_k(\mathbf{L}_t) \mathbf{N}_{t-1}^{\top} (\alpha \mathbf{I} + 2\gamma \mathbf{N}_{t-1} \mathbf{N}_{t-1}^{\top})^{-1},$$

$$\mathbf{N}_t = \arg\min_{\mathbf{N}} \frac{\alpha}{2} \|\mathbf{N}\|_F^2 + \gamma \|\mathcal{A}_k(\mathbf{L}_t) - \mathbf{M}_t \mathbf{N}\|_F^2.$$

$$\mathbf{N}_t = 2\gamma (\alpha \mathbf{I} + 2\gamma \mathbf{M}_t^{\mathsf{T}} \mathbf{M}_t)^{-1} \mathbf{M}_t^{\mathsf{T}} \mathcal{A}_k(\mathbf{L}_t).$$

Method

> Joint Denoising and Fusion Module



• Intensity Loss:

$$\mathcal{L}_{in} = \|\mathbf{F}^y - \max(\mathbf{L}_v^y, \mathbf{L}_r)\|_1$$

• Chrominance Loss:

$$\mathcal{L}_{chr} = \|\mathbf{F}^{Cb} - \mathbf{L}_{v}^{Cb}\|_{1} + \|\mathbf{F}^{Cr} - \mathbf{L}_{v}^{Cr}\|_{1}$$

• Gradient Loss:

$$\mathcal{L}_g = \|\nabla \mathbf{F}^y - [\mathbf{m}_g \cdot \nabla \mathbf{L}_v^y + (1 - \mathbf{m}_g) \cdot \nabla \mathbf{L}_r]\|_1$$

Convolutional Low Rank Regularization Loss:

$$\mathcal{L}_{rank} = \|\mathcal{A}_k(\mathbf{F})\|_*$$

- **Datasets:** LLVIP dataset, M3FD dataset
- □ Patch size: 128×128
- □ Convolutional Low-Rank Optimization Module:

$$k_1$$
, $k_2 = 12$, $k_3 = 2$, m , $n = 256$. Iteration $T = 30$.

$$\alpha = 200\mathbb{E}[|\nabla(x) - \nabla G(x)|], \beta = 2, \gamma = 80\mathbb{E}[|\nabla(x) - \nabla G(x)|]$$

□ Joint Denoising and Fusion Module:

Hyper-parameters: $\lambda = 1e3$, $\eta = 30$, κ equals during the training phase

Optimizer: Adam Optimizer

Learning Rate: 2e-4 with exponential decay

Number of Blocks: L_1 , $L_2 = 4$, L_3 , $L_r = 2$

Platform: NVIDIA 3090 GPU

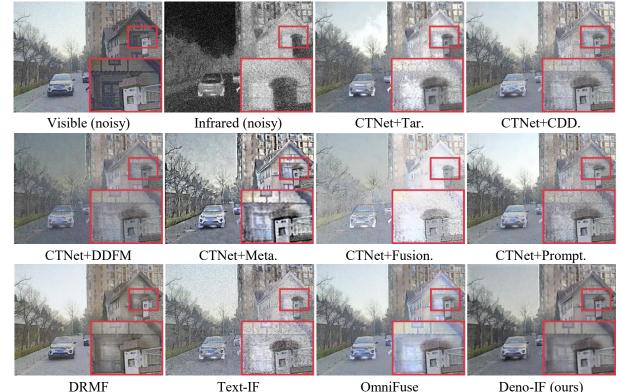
Qualitative Comparison

- 1. Joint denoising and fusion avoids residual noise in denoising-then-fusion approaches caused by limited pre-denoising performance.
- 2. Infer clean data from noisy source images in an unsupervised manner, show generalization across various noise types and levels.
- 3. The inference on clean data is based on **convolutional low-rankness**, avoiding excessive distortion of meaningful contents.

Gaussian noise — LLVIP dataset

Visible (noisy) Infrared (noisy) CTNet+Tar. CTNet+CDD. CTNet+Fusion. CTNet+DDFM CTNet+Meta. CTNet+Prompt. **DRMF** Text-IF OmniFuse Deno-IF (ours)

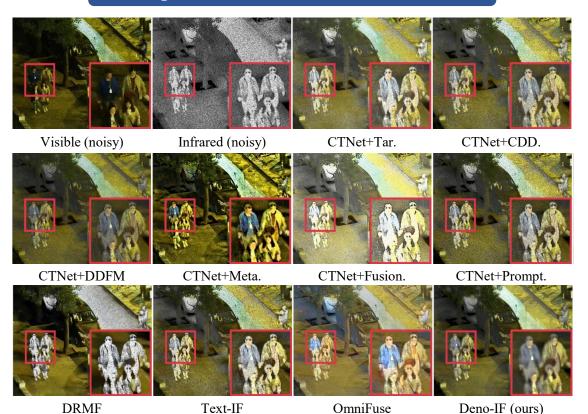
Gaussian noise — M3FD dataset



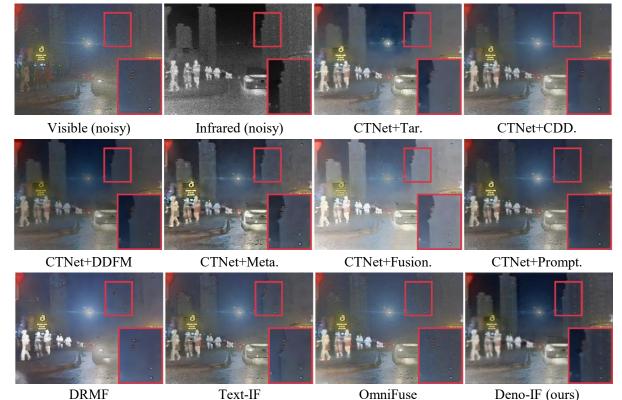
Qualitative Comparison

- 1. Joint denoising and fusion avoids residual noise in denoising-then-fusion approaches caused by limited pre-denoising performance.
- 2. Infer clean data from noisy source images in an unsupervised manner, show generalization across various noise types and levels.
- 3. The inference on clean data is based on **convolutional low-rankness**, avoiding excessive distortion of meaningful contents.

Speckle noise — LLVIP dataset



Speckle noise — M3FD dataset



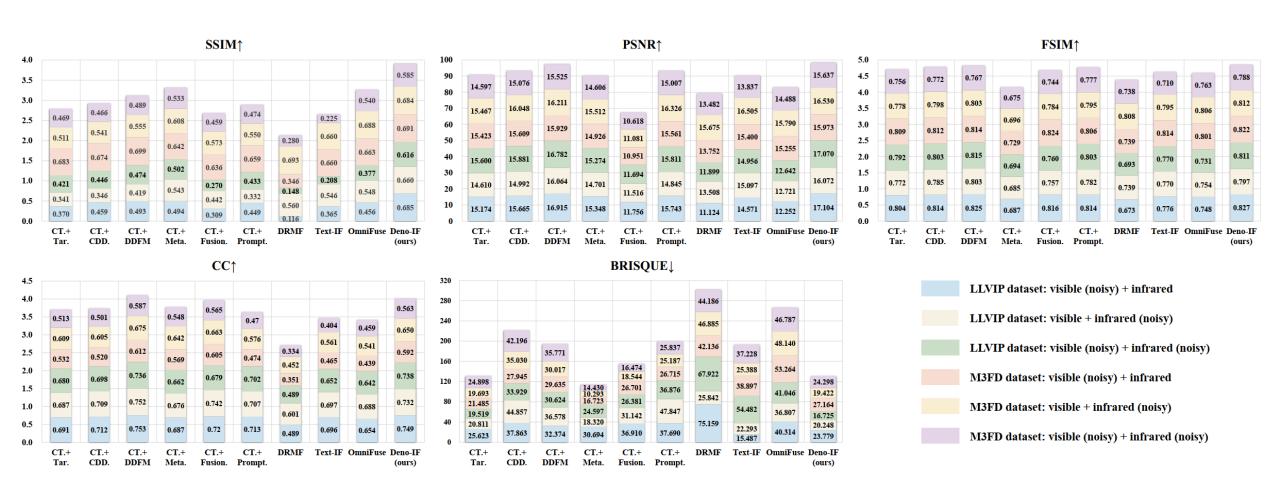
Quantitative Comparison

- ☐ Similarity-based **full-reference** metrics: SSIM, PSNR, feature similarity index (FSIM) and correlation coefficient (CC)
- Quality-based **no-reference** metric: BRISQUE

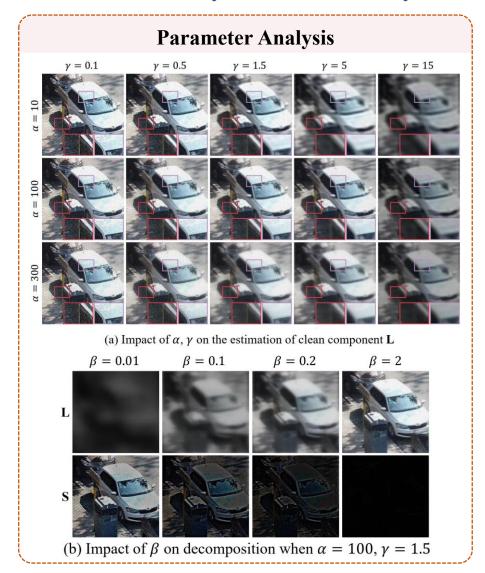
Gaussian]	LLVIP Datase	et		M3FD Dataset							
Metrics	SSIM↑ PSNR↑ FS		FSIM↑	FSIM↑ CC↑		SSIM↑	PSNR↑	FSIM↑	CC↑	BRISQUE↓			
CT.+Tar.	0.421±0.169	15.600±1.464	0.792 ± 0.024	0.680 ± 0.082	19.519±8.577	0.469±0.143	14.597±2.781	0.756 ± 0.032	0.513±0.195	24.898±9.713			
CT.+CDD.	0.446 ± 0.206	15.881 ± 1.366	$0.803 {\pm} 0.028$	0.698 ± 0.072	33.929 ± 20.019	0.466 ± 0.140	15.076 ± 2.789	0.772 ± 0.031	0.501 ± 0.226	42.196 ± 14.175			
CT.+DDFM	0.474 ± 0.178	16.782 ± 1.138	$0.815 {\pm} 0.022$	0.736 ± 0.077	$30.624{\pm}16.596$	0.489 ± 0.165	15.525 ± 2.513	0.767 ± 0.051	$0.587 {\pm} 0.191$	35.771 ± 13.177			
CT.+Meta.	0.502 ± 0.099	15.274 ± 1.193	0.694 ± 0.045	0.662 ± 0.083	24.597 ± 12.281	0.533 ± 0.132	14.606 ± 2.650	0.675 ± 0.053	0.548 ± 0.194	$14.430 {\pm} 5.869$			
CT.+Fusion.	0.270 ± 0.135	11.694 ± 0.624	0.760 ± 0.042	0.679 ± 0.078	26.381 ± 11.446	0.459 ± 0.094	10.618 ± 1.040	$0.744 {\pm} 0.047$	0.565 ± 0.158	16.474 ± 11.822			
CT.+Prompt.	0.433 ± 0.197	15.811 ± 1.331	0.803 ± 0.029	0.702 ± 0.073	36.876 ± 19.142	0.474 ± 0.125	15.007 ± 2.679	0.777 ± 0.033	0.470 ± 0.243	$25.837 {\pm} 13.808$			
DRMF	0.148 ± 0.081	11.899 ± 1.242	0.693 ± 0.031	$0.489 {\pm} 0.156$	67.922 ± 12.462	0.280 ± 0.121	13.482 ± 1.628	0.738 ± 0.043	0.334 ± 0.219	44.186 ± 11.117			
Text-IF	0.208 ± 0.069	14.956 ± 1.125	0.770 ± 0.025	0.652 ± 0.071	54.482 ± 10.614	0.225 ± 0.089	13.837 ± 2.509	0.710 ± 0.055	$0.404{\pm}0.209$	37.228 ± 8.241			
OmniFuse	0.377 ± 0.080	12.642 ± 0.727	0.731 ± 0.026	0.642 ± 0.089	41.046 ± 3.748	0.540 ± 0.098	14.488 ± 2.119	0.763 ± 0.031	0.459 ± 0.211	46.787 ± 6.876			
Deno-IF	0.616±0.064	17.070±1.426	0.811 ± 0.023	0.738 ± 0.074	$16.725 {\pm} 4.091$	0.585±0.081	15.637±2.899	0.788±0.029	0.563 ± 0.205	24.298±7.095			
Speckle			LLVIP Datase	et	·	M3FD Dataset							

Speckle		1	LLVIP Datase	et	M3FD Dataset								
Metrics	SSIM↑	PSNR↑	FSIM↑	CC↑	BRISQUE↓	SSIM↑	PSNR↑	FSIM↑	CC↑	BRISQUE↓			
CT.+Tar.	0.423±0.073	15.125±1.464	0.776 ± 0.024	0.687 ± 0.072	13.375±9.263	0.553±0.129	15.358±2.393	0.775 ± 0.039	0.553±0.206	13.950 ± 9.283			
CT.+CDD.	0.419 ± 0.096	$15.527{\pm}1.515$	0.789 ± 0.026	0.681 ± 0.063	45.497 ± 13.496	0.539 ± 0.145	15.906 ± 2.520	0.789 ± 0.041	$0.558 {\pm} 0.215$	25.231 ± 14.022			
CT.+DDFM	0.474 ± 0.086	16.191 ± 1.218	$0.808 {\pm} 0.022$	0.723 ± 0.069	32.897 ± 12.572	0.584 ± 0.125	16.232 ± 2.259	0.806 ± 0.047	0.641 ± 0.157	18.320 ± 11.767			
CT.+Meta.	0.538 ± 0.072	$15.102{\pm}1.220$	0.697 ± 0.043	0.669 ± 0.075	10.860 ± 9.531	0.615 ± 0.115	15.606 ± 2.526	0.710 ± 0.046	0.611 ± 0.164	$10.412{\pm}6.587$			
CT.+Fusion.	0.338 ± 0.055	11.909 ± 0.694	$0.737 {\pm} 0.032$	0.683 ± 0.066	29.446 ± 7.250	0.516 ± 0.106	10.950 ± 0.807	0.774 ± 0.034	0.612 ± 0.150	21.178 ± 9.460			
CT.+Prompt.	0.381 ± 0.085	$15.212{\pm}1.313$	$0.787 {\pm} 0.026$	0.681 ± 0.066	$48.286{\pm}12.442$	0.522 ± 0.146	15.881 ± 2.447	0.784 ± 0.041	0.521 ± 0.244	$21.837 {\pm} 12.825$			
DRMF	0.475 ± 0.047	12.417 ± 1.377	$0.722 {\pm} 0.021$	0.567 ± 0.137	$21.406{\pm}10.566$	0.649 ± 0.100	14.147 ± 2.561	0.790 ± 0.026	$0.423{\pm}0.246$	$43.180{\pm}17.155$			
Text-IF	0.400 ± 0.054	13.953 ± 1.119	0.759 ± 0.019	$0.665 {\pm} 0.060$	27.072 ± 9.667	0.554 ± 0.128	15.941 ± 2.402	0.780 ± 0.037	$0.496{\pm}0.235$	$18.908 \!\pm\! 10.381$			
OmniFuse	0.479 ± 0.052	12.859 ± 0.775	$0.741 {\pm} 0.017$	$0.665 {\pm} 0.074$	39.696 ± 4.430	0.585 ± 0.104	15.221 ± 2.089	0.767 ± 0.033	$0.523{\pm}0.213$	44.850 ± 7.131			
Deno-IF	0.633±0.052	16.528±1.370	0.805 ± 0.022	0.738 ± 0.065	9.280 ± 5.918	0.656±0.075	$16.525 {\pm} 2.800$	0.813 ± 0.026	0.648 ± 0.155	16.514±8.460			

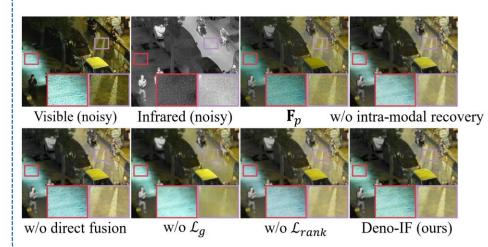
Quantitative Comparison



> Parameter Analysis, Ablation Study, and Different-Level Performance



Ablation Study



Metrics	$\mathbf{SSIM} \!\!\uparrow$	PSNR ↑	FSIM ↑	CC↑
w/o intra-modal	0.606	16.960	0.799	0.730
w/o direct fusion	0.613	16.965	0.797	0.730
w/o \mathcal{L}_g	0.600	16.160	0.789	0.685
w/o \mathcal{L}_{rank}	0.611	16.554	0.802	0.727
Deno-IF (ours)	0.616	17.070	0.811	0.738

Results on Dealing with Different-Level Noise

	PSNR↑			SSIM↑			FSIM↑				CC↑				BRISQUE↓					
σ	DRMF	Text.	Omn.	Deno.	DRMF	Text.	Omn.	Deno.	DRMF	Text.	Omn.	Deno.	DRMF	Text.	Omn.	Deno.	DRMF	Text.	Omn.	Deno.
10	11.997	16.141	12.522	16.878	0.309	0.431	0.484	0.675	0.716	0.814	0.747	0.818	0.557	0.702	0.667	0.740	26.855	33.060	41.297	15.364
20	11.874	15.736	12.551	17.097	0.182	0.239	0.427	0.650	0.705	0.793	0.738	0.816	0.528	0.681	0.657	0.738	58.717	45.843	41.610	16.493
30	11.949	14.433	12.701	17.199	0.170	0.148	0.384	0.632	0.700	0.737	0.732	0.813	0.510	0.629	0.648	0.735	66.016	58.087	40.411	17.989
40	11.935	14.182	12.803	17.262	0.138	0.109	0.350	0.617	0.688	0.725	0.728	0.809	0.467	0.604	0.636	0.733	74.548	61.441	38.531	20.514
50	11.719	13.477	12.848	17.242	0.106	0.084	0.318	0.602	0.675	0.693	0.722	0.805	0.423	0.562	0.624	0.732	75.814	66.258	35.604	24.256

Thanks for watching!

Deno-IF: Unsupervised Noisy Visible and Infrared Image Fusion Method

Han Xu¹ Yuyang Li¹ Yunfei Deng¹ Jiayi Ma² Guangcan Liu^{1*}

¹ School of Automation, Southeast University, Nanjing, China ² Electronic Information School, Wuhan University, Wuhan, China

Email: xu_han@seu.edu.cn