Learn2Mix: Training Neural Networks Using Adaptive Data Integration

Shyam Venkatasubramanian¹, Vahid Tarokh¹

¹Duke University

Outline

- Motivation
- Overview
- Theoretical Results
- 4 Empirical Results
- Conclusion

Motivation: Faster, More Robust Training

- Standard training (k classes) implicitly uses fixed class proportions per batch $\tilde{\alpha}$.
- Classes differ in difficulty harder classes deserve more emphasis during training.
- Question: Can we adapt batch class proportions using real-time error rates to accelerate convergence and handle imbalance?

Key Idea (Learn2Mix)

Adapt class proportions each epoch via instantaneous class-wise error rates:

$$\alpha^t \leftarrow \alpha^{t-1} + \gamma \left(\frac{\mathcal{L}(\theta^{t-1})}{\mathbf{1}^T \mathcal{L}(\theta^{t-1})} - \alpha^{t-1} \right), \quad \text{and:} \quad \mathcal{L}(\theta^t, \alpha^t) = \sum_{i=1}^k \alpha_i^t \mathcal{L}_i(\theta^t).$$

Learn2Mix in Practice

Per-epoch loop:

- **1** Build batches by sampling $\alpha_i^t M$ examples from each class set J_i and combining (batch size M).
- ② Compute per-class empirical losses $\mathcal{L}_i(\theta^t)$ from the batches.
- Aggregate empirical loss and update parameters:

$$\mathcal{L}(\theta^t, \alpha^t) = \sum_{i=1}^k \alpha_i^t \, \mathcal{L}_i(\theta^t), \qquad \theta^{t+1} = \theta^t - \eta \, \nabla_\theta \mathcal{L}(\theta^t, \alpha^t).$$

Update mixing parameters using normalized class losses:

$$\mathbb{L}_i^t = \frac{\mathcal{L}_i(\theta^t)}{\sum_{j=1}^k \mathcal{L}_j(\theta^t)}, \quad \text{and:} \quad \alpha^{t+1} = \alpha^t + \gamma \big(\mathbb{L}^t - \alpha^t\big).$$

- Mixing rate $\gamma \in (0,1)$ controls how quickly proportions adapt.
- \bullet Works for classification, regression, reconstruction (group data into k partitions).

Learn2Mix in Practice (continued)

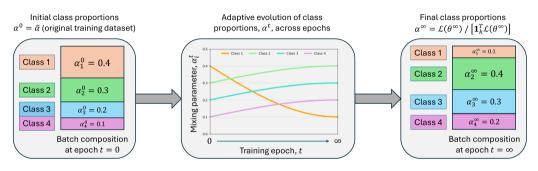


Illustration of the learn2mix training mechanism. The class-wise composition of batches is adaptively modified during training using instantaneous class-wise error rates.

Theoretical Results

Assume each per-class loss $\mathcal{L}_i(\theta)$ is μ_i -strongly convex with L_i -Lipschitz gradients. Suppose $\mu^* = \min_i \mu_i$, $L^* = \max_i L_i$, and let θ^* denote the optimal model parameters.

Proposition (Mixing Convergence): If $\eta \in (0, 2/L^*)$ and $\gamma \in (0, 1)$, then:

$$\lim_{t\to\infty}\theta^t=\theta^*,\quad \text{and:}\quad \lim_{t\to\infty}\alpha^t=\alpha^*=\frac{\mathcal{L}(\theta^*)}{\mathbf{1}^T\mathcal{L}(\theta^*)}.$$

Proposition (Faster Convergence): If the following condition holds:

$$(\star) \ \left[\left(\frac{\mu^*}{2} - L^* \right) \|\theta^t - \theta^*\|^2 + \tilde{\alpha}^\top \left(\mathcal{L}(\theta^t) - \mathcal{L}(\theta^*) \right) \right] \left[\|\theta^t - \theta^*\| - \left(\mathcal{L}(\theta^t) - \mathcal{L}(\theta^*) \right) \right] > 0,$$

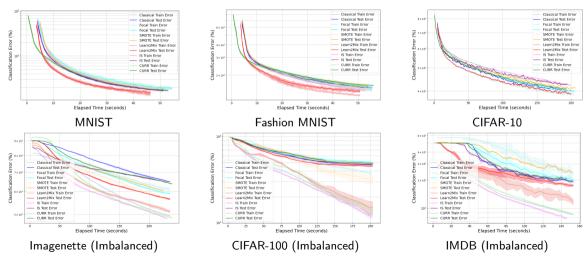
then for any learning rate $\eta > 0$ and mixing rate $\gamma \in (0, \beta]$:

$$\|\theta^t - \eta \nabla_{\theta} \mathcal{L}(\theta^t, \alpha^t) - \theta^*\| \le \|\theta^t - \eta \nabla_{\theta} \mathcal{L}(\theta^t, \tilde{\alpha}) - \theta^*\|.$$

Interpretation: When (\star) holds, reweighting toward higher-error classes (Learn2Mix) yields a one-step update that is *closer* to θ^* than the update under classical training with the same η .

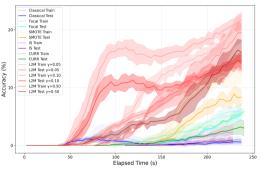
Empirical Results: Classification

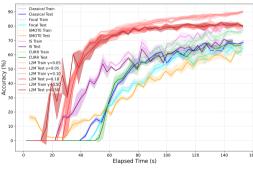
Learn2Mix yields faster convergence across various classification benchmarks.



Empirical Results: Tracking Worst-Class Performance

Learn2mix improves worst-class classification accuracies during training.





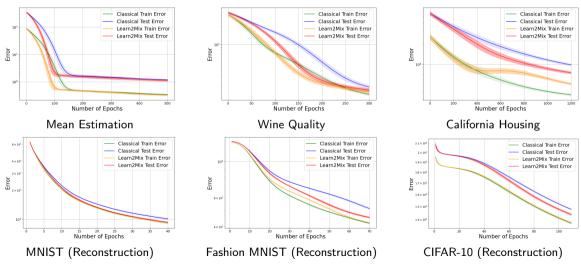
Imagenette (Imbalanced)

IMDB (Imbalanced)

- Matches intuition: learn2Mix increases the proportion of harder classes during training
- Translates to stronger results for the most challenging classes.

Empirical Results: Regression & Reconstruction

Learn2Mix yields faster convergence in regression and reconstruction settings.



Conclusion

Takeaways

- Learn2Mix: reweights batches toward harder classes via current errors.
- **Theory:** converges to θ^* ; mixing stabilizes at difficulty-aware α^* .
- Practice: faster convergence and stronger worst-class results across tasks.

Paper & Updates

Acknowledgements: Shyam Venkatasubramanian and Vahid Tarokh were supported in part by the U.S. Air Force Office of Scientific Research under award FA9550-21-1-0235.