

A Beyond-Worst-Case Analysis of Greedy k-means++

Qingyun Chen

Sungjin Im

Ryan Milstrey

Benjamin Moseley

UC Santa Cruz

UC Merced

CMU

Chenyang Xu

Ruilong Zhang

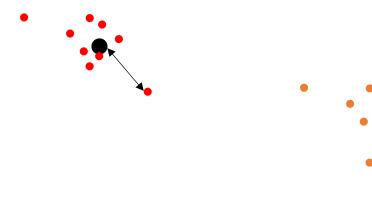
East China Normal University

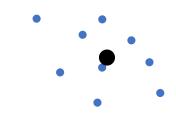
Technical University of Munich

k-means Clustering

Input: n points $X \subseteq \mathbb{R}^d$, and a parameter k.

Goal: find a set $C \subseteq \mathbb{R}^d$ of k centers that minimize the sum of the squared distances between each point and its closest center, i.e., $\sum_{x \in X} \min_{c \in C} ||x - c||_2^2$.





Lloyd's heuristic

Seeding Algorithm

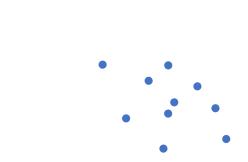
Lloyd's heuristic

Provide *k* initial centers

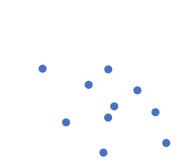
Optimize the solution using k initial centers

The quality of Lloyd's heuristic depends on the initial centers.

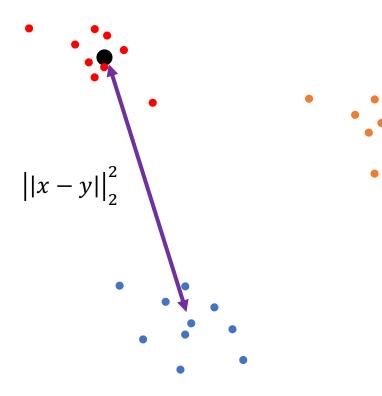
- 1. Choose an initial center c_1 uniformly at random from X.
- 2. Choose the next center c_i , with probability in proportional to the squared distance between the point to its closest chosen center.
- 3. Repeat Step 2 until we have k centers.



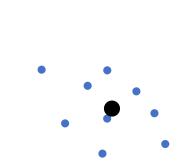
- 1. Choose an initial center c_1 uniformly at random from X.
- 2. Choose the next center c_i , with probability in proportional to the squared distance between the point to its closest chosen center.
- 3. Repeat Step 2 until we have k centers.



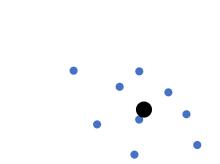
- 1. Choose an initial center c_1 uniformly at random from X.
- 2. Choose the next center c_i , with probability in proportional to the squared distance between the point to its closest chosen center.
- 3. Repeat Step 2 until we have $oldsymbol{k}$ centers.

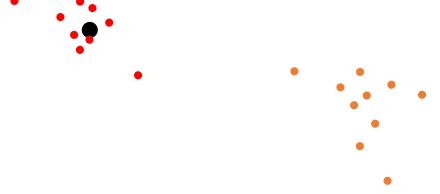


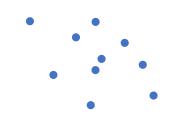
- 1. Choose an initial center c_1 uniformly at random from X.
- 2. Choose the next center c_i , with probability in proportional to the squared distance between the point to its closest chosen center.
- 3. Repeat Step 2 until we have k centers.



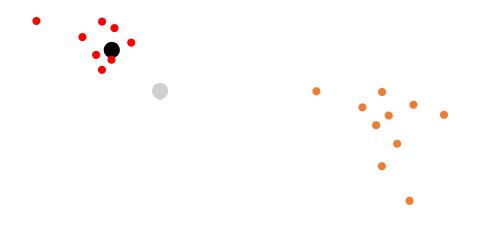
- 1. Choose an initial center c_1 uniformly at random from X.
- 2. Choose the next center c_i , with probability in proportional to the squared distance between the point to its closest chosen center.
- 3. Repeat Step 2 until we have $oldsymbol{k}$ centers.





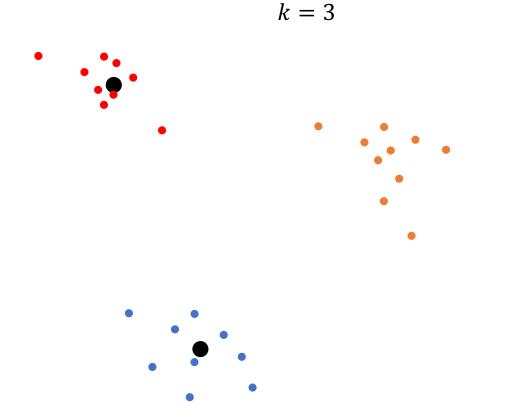


- 1. In each iteration, choose ℓ candidates, with probability *in proportional to* the squared distance between the point to its closest chosen center.
- 2. Select the one the minimizes the objective.
- 3. Repeat Step 2 until we have $oldsymbol{k}$ centers.





- 1. In each iteration, choose ℓ candidates, with probability *in proportional to* the squared distance between the point to its closest chosen center.
- 2. Select the one the minimizes the objective.
- 3. Repeat Step 2 until we have $oldsymbol{k}$ centers.



- 1. In each iteration, choose ℓ candidates, with probability *in proportional to* the squared distance between the point to its closest chosen center.
- 2. Select the one the minimizes the objective.
- 3. Repeat Step 2 until we have k centers.

- 1. Choose an initial center c_1 uniformly at random from X.
- 2. Choose the next center c_i , with probability in proportional to the squared distance between the point to its closest chosen center.
- 3. Repeat Step 2 until we have k centers.

- 1. In each iteration, choose ℓ candidates, with probability *in proportional to* the squared distance between the point to its closest chosen center.
- 2. Select the one the minimizes the objective.
- 3. Repeat Step 2 until we have $oldsymbol{k}$ centers.

- 1. [Arthur-Vassilvitskii, SODA'07] suggests that the greedy performs better in practice.
- 2. Popular libraries such as Scikit-learn implement the greedy variant.

[Bhattacharya et al, ESA'20] shows that in worst scenarios, the greedy k-means++ is $\Omega(\ell \log k)$ -approximation, while k-means++ is $O(\log k)$ -approximation.

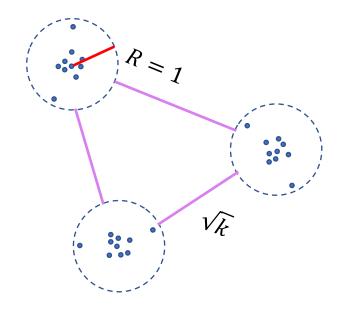
[Bhattacharya et al, ESA'20] shows that in worst scenarios, the greedy k-means++ is $\Omega(\ell \log k)$ -approximation, while k-means++ is $O(\log k)$ -approximation.

Question: Why the greedy outperforms in practice?

Results

The greedy outperforms the k-means++ with the following instances.

- 1. Points of each cluster follow an exponentially decaying distribution.
- 2. Clusters have a similar number of points
- 3. The distances between clusters are large k^{θ} , where $\theta \in (0,1/2)$.

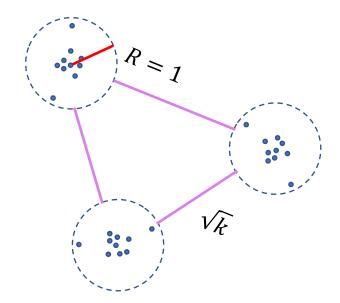


Results

The greedy outperforms the k-means++ with the following instances.

- 1. Points of each cluster follow an exponentially decaying distribution.
- 2. Clusters have a similar number of points
- 3. The distances between clusters are large k^{θ} , where $\theta \in (0,1/2)$.

Theorem: Greedy k-means++ is $O((\ln \ln k)^2)$ -approximation, while k-means++ is $\Omega(\ln k)$ -approximation.



Conclusion

- 1. We give the first theoretical result towards closing the gap of the greedy outperforms the k-means++ in practice.
- 2. We present natural structural instances showing that the greedy has a better approximation ratio.