Precise Diffusion Inversion: Towards Novel Samples and Few-Step Models

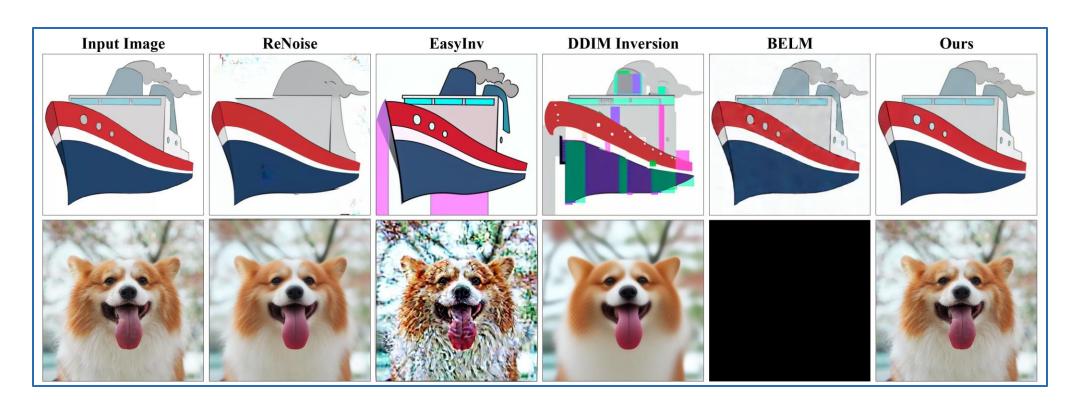
Jing Zuo, Luoping Cui, Chuang Zhu, Yonggang Qi (Corresponding Author)

Beijing University of Posts and Telecommunications

NeurIPS 2025 Poster

Diffusion Inversion Problem

- Given a real image x_0 , diffusion inversion aims to estimate the latent representation x_T , such that a pretrained diffusion model π_{θ} can reconstruct the image x_0 by applying its denoising process \mathcal{X} to x_T .
- Current methods convert diffusion inversion to a fixed-point problem and solve it using numerical iterations (e.g., Anderson acceleration or Newton's method).
- However, achieving both accuracy and efficiency remains challenging, especially for few-step models (the first row) and novel samples (the second row).



Reformulating Diffusion Inversion as a Learning Problem

- We believe that gradient-based optimization is inherently more precise and efficient than numeric solvers, owing to the smooth transitions in the latent space of diffusion models.
 Thus, we formulate diffusion inversion as a learning problem.
- Let x_0 be an observed image, and let ϵ_T^* denote a learnable noise embedding. The objective is defined as:

$$\arg\min_{\epsilon_T^*} \|\mathcal{X}(x_T^*) - x_0\|^2,$$

where

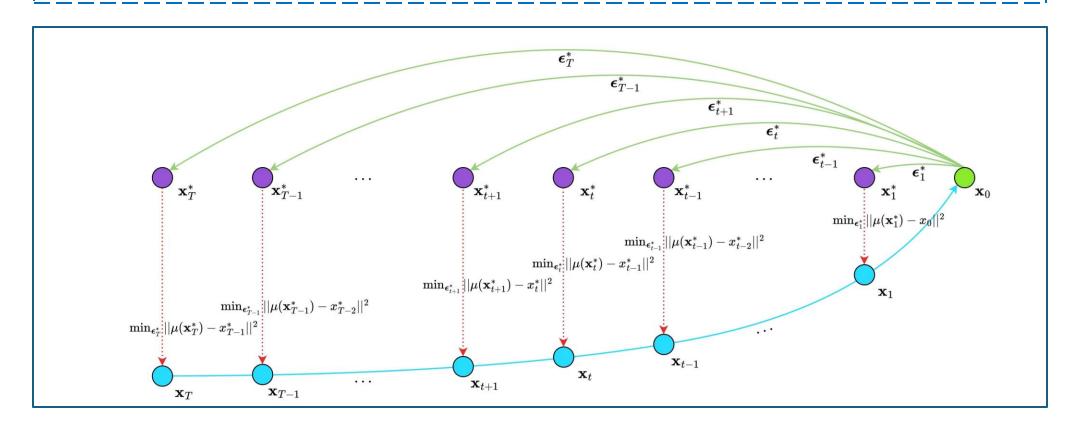
$$x_T^* = \sqrt{\overline{\alpha}_T} x_0 + \sqrt{1 - \overline{\alpha}_T} \epsilon_T^*$$

and $\mathcal{X}: x_T \to x_{T-1} \to \cdots \to x_0$ is defined by the pretrained diffusion model.

■ Directly optimizing the objective requires backpropagation through all T timesteps, which incurs prohibitive memory and computational costs.

Progressive Denoising Trajectory Learning

- To address this issue, we decompose the objective into T subproblem, in which we learn a local noise embedding ϵ_t^* enabling one denoising step reconstructs the previous latent x_{t-1} .
- By recursively solving these subproblems from t = 1 to T, we can obtain a precise denoising trajectory $\{x_1^*, ..., x_T^*\}$.



Optimization Algorithm of *PreciseInv*

Algorithm 1 PreciseInv for Diffusion Models with DDIM Sampler

```
1: Input: Real image \mathbf{x}_0, diffusion mode \epsilon_{\theta}, convergence threshold \eta, number of inference steps T
   2: Output: Inverted latent \mathbf{x}_T^*
   3: for t = 1 to T do
                  Initialize \epsilon_t^* \sim \mathcal{N}(\mathbf{0}, \mathbf{I})
                  if t > 1 then
                   \mathbf{x}_{t-1}^* \leftarrow \sqrt{\bar{\alpha}_{t-1}} \, \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_{t-1}} \, \boldsymbol{\epsilon}_{t-1}^*
                   else
                    \mathbf{x}_{t-1}^* \leftarrow \mathbf{x}_0
                   end if
                  // Apply a single DDIM Inversion step
                  \boldsymbol{\epsilon}_t^* \leftarrow \frac{1}{\sqrt{1-\bar{\alpha}_t}} \left( \mu(\mathbf{x}_{t-1}^*) - \sqrt{\bar{\alpha}_t} \mathbf{x}_0 \right) \quad (\mu \text{ defined in Eq. (16)})
12: \mathbf{x}_{t}^{*} \leftarrow \sqrt{\bar{\alpha}_{t}} \, \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}} \, \boldsymbol{\epsilon}_{t}^{*}
13: \mathcal{L}_{\text{rec}} \leftarrow \|\mu(\mathbf{x}_{t}^{*}) - \mathbf{x}_{t-1}^{*}\|^{2}
14: while \mathcal{L}_{rec} < \eta do
           \mathbf{x}_t^* \leftarrow \sqrt{\bar{\alpha}_t} \, \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \, \boldsymbol{\epsilon}_t^* \\ \mathcal{L}_{\text{rec}} \leftarrow \|\mu(\mathbf{x}_t^*) - \mathbf{x}_{t-1}^*\|^2
                  oldsymbol{\epsilon}_t^* \leftarrow oldsymbol{\epsilon}_t^* - 
abla \mathcal{L}_{	ext{rec}}
                   end while
18:
19: end for
20: return \mathbf{x}_T^*
```

Theorical Analysis

- Assumption 1. The diffusion model $\epsilon_{\theta}(x_t, t)$ is Lipschitz continuous in x_t with constant L_m , i.e., $\|\epsilon_{\theta}(x_1, t) \epsilon_{\theta}(x_2, t)\| \le L_m \|x_1 x_2\|$.
- Assumption 2. Let $\mathcal{L}_t \coloneqq \|\mu(x_t) \mu(x_{t-1})\|^2$. The function \mathcal{L}_t has L-Lipschitz continuous gradients with respect to x_t , i.e., $\|\nabla \mathcal{L}_t(x_t) \nabla \mathcal{L}_t(x_t')\| \le L\|x_t x_t'\|$.
- Theorem 1. Under Assumptions 1 and 2, the gradient descent algorithm on each subproblem $P(t) = \arg\min_{\epsilon_T^*} ||\mathcal{X}(x_t^*) x_{t-1}^*||^2 \text{ with step size } \gamma < 2/L \text{ converges monotonically to a stationary point of } \mathcal{L}_t.$
- Theorem 2. Let $\Gamma(t) := \|\mathcal{X}(x_t) x_0\|^2$. Under Assumption 1 and Theorem 1, $\Gamma(T)$ admits a geometric upper bound, i.e., $\Gamma(T) \le \delta/(1 L_m)$.

Supported Models & Schedulers

Code is available at https://github.com/panda777777/PreciseInv

Types	Models Scheduler			
	SD1.4	DDIM / DDPM		
Diffusion	SD1.5	DDIM / DDPM		
	SD2.1	DDIM / DDPM		
	SDXL	DDIM / DDPM		
Few-Step Models	LCM-SD1.5	DDIM / DDPM		
	LCM-SDXL	DDIM / DDPM		
	SDXL-Turbo	DDIM / DDPM		
Rectified Flow Models	SD3	Euler		

Image Reconstruction

- We further demonstrate the generalizability of **PreciseInv**.
- Moreover, the performance gains are more significant under few-step s

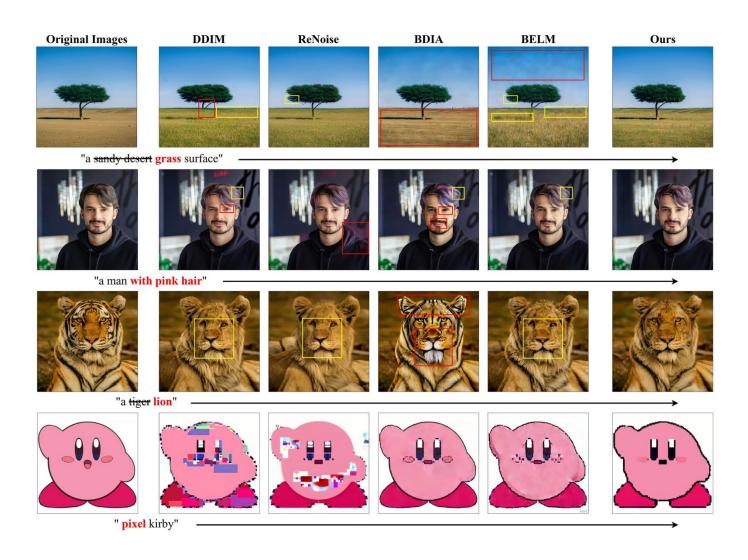
Table 2: Quantitative comparison of diffusion inversion methods for image reconstruction using LCM-SD v1.5 and SDXL on the COCO dataset.

	LCM-SD v1.5				SDXL			
	LPIPS (\lambda)	SSIM (†)	PSNR (†)	Time (s, \downarrow)	LPIPS (\lambda)	SSIM (†)	PSNR (†)	Time (s, \downarrow)
BELM	0.449	0.362	13.99	9.1	<u> </u>	_	_	
DDIM Inversion	0.626	0.420	15.74	35.5	0.492	0.464	16.24	154.8
ReNoise	0.603	0.414	15.59	83.1	0.424	0.533	18.26	27.4
EasyInv	_	_	_	_	0.194	0.683	20.89	35.1
PreciseInv ($\eta = 10^{-2}$)	0.103	0.753	25.55	8.83	0.185	0.763	27.00	<u>7.43</u>
PreciseInv ($\eta = 10^{-5}$)	0.083	$\overline{0.775}$	26.45	25.54	0.080	$\overline{0.854}$	30.93	41.11

Table 3: Quantitative results of image reconstruction under the few-step inference setting for different inversion methods using SD v1.4 on the COCO dataset.

	T=2			T=4			
	$ \overline{\text{LPIPS } (\downarrow)}$	SSIM (†)	PSNR (†)	$ $ LPIPS (\downarrow)	SSIM (†)	PSNR (†)	
BELM	0.832	0.112	8.19	0.431	0.366	14.03	
DDIM Inversion	0.331	0.591	20.62	0.306	0.593	20.65	
ReNoise	0.199	0.671	22.92	0.158	0.702	23.53	
EasyInv	0.563	0.357	14.97	0.537	0.332	13.66	
PreciseInv	0.077	0.766	25.93	0.084	0.762	25.65	

Image Editing



- We compare **PreciseInv** with recent inversion methods under the same editing pipeline to assess their editing performance.
- We demonstrate precise inversion enables more faithful and controllable prompt-based editing.

Linear Interpolation

To probe the local behavior of PreciseInv, we interpolate between two inverted latent representations $x_T^{(1)}$ and $x_T^{(2)}$, and visualize the intermediate representations.

Thanks