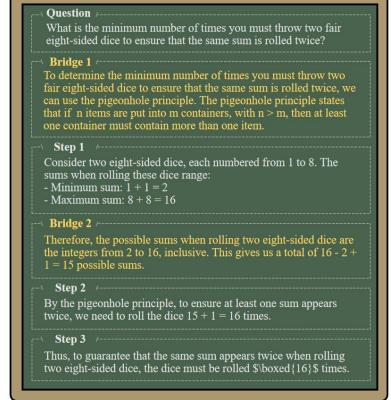


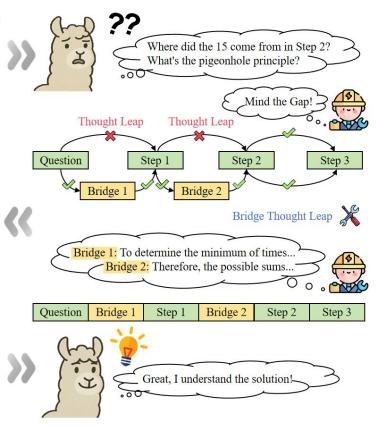
Mind the Gap: Bridging Thought Leap for Improved Chain-of-Thought Tuning

Haolei Xu^{1*} Yuchen Yan^{1*} Yongliang Shen^{1†} Wenqi Zhang¹ Guiyang Hou¹ Shengpei Jiang² Kaitao Song³ Weiming Lu^{1†} Jun Xiao¹ Yueting Zhuang¹

¹ Zhejiang University ² SF Technology

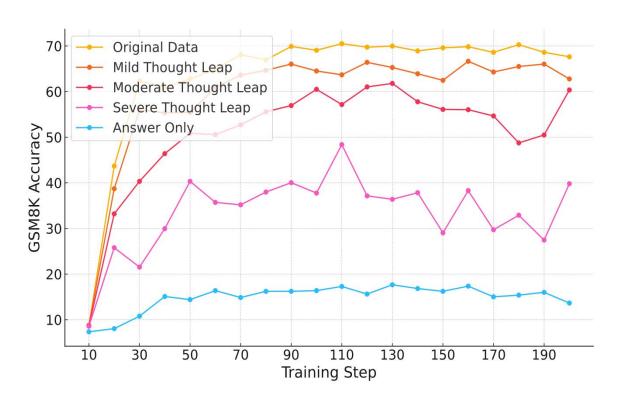
³ Microsoft Research Asia
{xuhaolei,syl,luwm}@zju.edu.cn


Background


- Chain-of-Thought (CoT) is a key paradigm for improving complex reasoning, especially in structured tasks like math and logic.
- Yet even refined CoT data may skip essential reasoning steps that are clear to humans but difficult for models.

What is the pigeonhole principle?

(


Where does the number 15 come from?

Background

- What happens when a model is trained on datasets with thought leaps?
- Based on MetaMathQA, construct datasets with varying degrees of thought leaps.

Question	Step 1	Step 2	Step 3	Step	Step N	Answer
Question	Sp. 1	Step 2	Step 3	Step	Step N	Answer
		Step 2	Step 3	•	•	
Question	Step 1	Sp 2	Sp 3	Step	Step N	Answer
Question	S 2 1	St 2	S 3 3	St	SON	Answer

Training impact: Severe reasoning leaps can cause up to 27.83% performance loss

Learning efficiency: Slower and less stable convergence.

Formulation

V : completeness function

Ideal complete CoT
$$C^* = (Q, s_1^*, s_2^*, \dots, s_m^*) \quad \forall i \in [1, m-1] \quad V(s_i^*, s_{i+1}^*) = \text{True}$$

$$\forall i \in [1, m-1] \quad V(s_i^*, s_{i+1}^*) = \text{True}$$

Thought Leap CoT
$$C = (s_0, s_1, s_2, \dots, s_n)$$
 $\exists k \in [0, n-1]$ $V(s_k, s_{k+1}) = \text{False}$

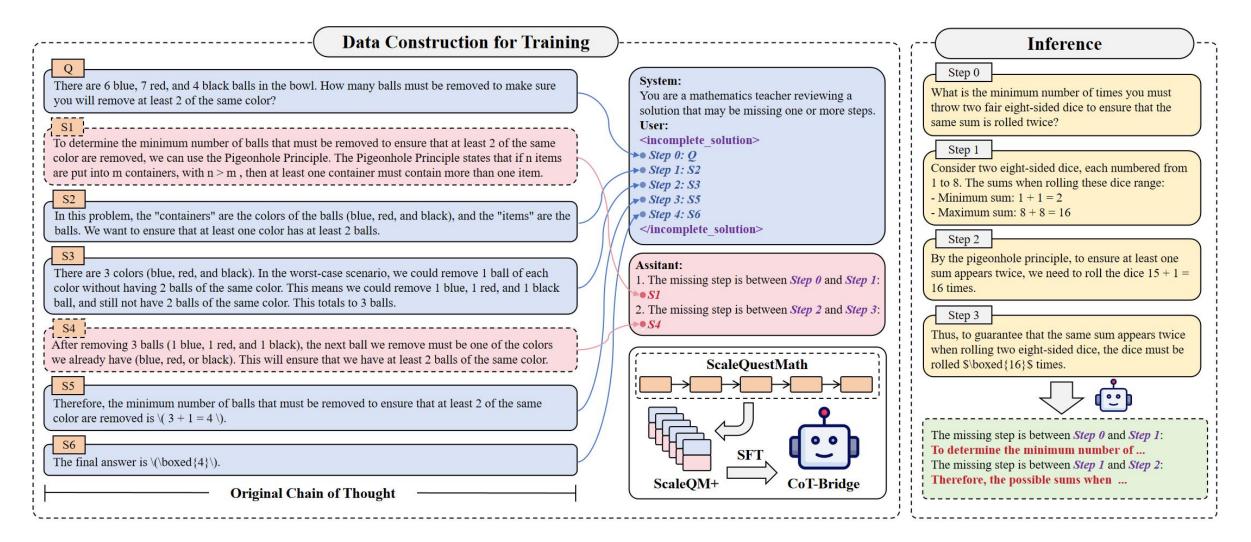
$$\exists k \in [0, n-1] \quad V(s_k, s_{k+1}) = \text{False}$$

CoT Thought Leap Bridge task

- Leap Identification (s_k, s_{k+1})
- Content Bridge $(s'_{k,1}, s'_{k,2}, \dots, s'_{k,j}) \Longrightarrow V(s'_{k,j}, s_{k+1}) = \text{True}$

$$V(s_k, s'_{k,1}) = \text{True}$$

$$\forall i \in [1, j-1], V(s'_{k,i}, s'_{k,i+1}) = \text{True}$$


$$V(s'_{k,j}, s_{k+1}) = \text{True}$$

Challenges:

- Designing a completeness evaluation function is difficult.
- Ideal completeness is a theoretical concept how can it be handled in practice?

CoT-Bridge

We chose **ScaleQuestMath** as an approximation of ideal CoT, as its reasoning structure is relatively complete and well-formed, making it suitable for systematic step removal.

Main Experiment

Dataset	Size	Method	В	asic Level		Com	petition Le	vel	Average
Duvusev	O.L.C	1,1001100	GSM8K	MATH	GaoKao	Odyssey	Olympiad		riverage
			Meta-l	Llama3.1-8	BB				
1	/	4-shot	54.15	18.30	20.58	16.54	4.85	11.25	20.95
GSM8K+MATH	15k	Direct SFT	65.09	19.25	21.69	18.48	5.07	12.50	23.68
MathInstruct	262k	Direct SFT	68.16	23.60	25.52	25.06	5.89	7.50	25.96
		Direct SFT	78.90	36.10	32.86	24.68	8.48	17.50	33.09
		QwenBridger-S	$81.10^{+2.20}$	$34.85^{-1.25}$			$9.26^{+0.78}$	$7.50^{-10.00}$	
MetaMathQA	395k	QwenBridger-L	$80.80^{+1.90}$	$38.05^{+1.95}$			$9.37^{+0.89}$	$2.50^{-15.00}$	$31.11^{-1.98}$
		CoT-Bridge-R	$80.46^{+1.56}$	38.05 ^{+1.95}	33.57 ^{+0.71}	$24.42^{-0.26}$	$9.37^{+0.89}$	$12.50^{-5.00}$	$33.06^{-0.03}$
		CoT-Bridge	81.14 ^{+2.24}	38.15 ^{+2.05}	33.12 ^{+0.26}	25.97 ^{+1.29}	9.48 ^{+1.00}	18.75 ^{+1.25}	34.44 ^{+1.35}
		Direct SFT	84.86	51.45	49.03	36.56	21.30	20.00	43.87
NuminaMath	859k	QwenBridger-S	$84.23^{-0.63}$	$52.40^{+0.95}$	51.95+2.92	$39.73^{+3.17}$	$24.70^{+3.40}$	$27.50^{+7.50}$	46.75+2.88
		QwenBridger-L	$85.25^{+0.39}$	54.20+2.75				$35.00^{+15.00}$	
		CoT-Bridge-R	84.82-0.04	54.20+2.75		$40.12^{+3.56}$		33.75+13.75	
		CoT-Bridge	85.97 ^{+1.11}	56.80 ^{+5.35}	54.42 ^{+5.39}	40.76 ^{+4.20}	24.85 ^{+3.55}	35.63 ^{+15.63}	49.74 ^{+5.87}
			Qwen2	.5-Math-1.	5B				
/	1	4-shot	79.00	48.05	45.52	38.18	19.07	22.50	42.05
GSM8K+MATH	15k	Direct SFT	74.45	51.40	47.66	38.50	17.44	27.50	42.83
MathInstruct	262k	Direct SFT	70.96	48.90	46.49	40.89	16.22	20.00	40.58
		Direct SFT	81.01	49.60	46.62	38.63	18.19	21.25	42.55
		QwenBridger-S	81.58 ^{+0.57}					$25.63^{+4.38}$	44.04+1.49
MetaMathQA	395k	QwenBridger-L	81.01 ^{-0.00}	53.63+4.03				$27.50^{+6.25}$	44.82+2.27
		CoT-Bridge-R	81.58 ^{+0.57}	$53.65^{+4.05}$	$48.12^{+1.50}$			$25.63^{+4.38}$	44.37+1.82
		CoT-Bridge	$81.39^{+0.38}$	56.60 ^{+7.00}	49.61 ^{+2.99}	39.66 ^{+1.03}	19.44 ^{+1.25}	28.75 ^{+7.50}	45.91 ^{+3.36}
		Direct SFT	83.62	63.90	57.40	46.77	33.04	32.5	52.87
		QwenBridger-S	$83.23^{-0.39}$	$64.20^{+0.30}$				$35.00^{+2.50}$	53.28+0.41
NuminaMath	859k	QwenBridger-L	$82.81^{-0.81}$	$66.25^{+2.35}$	$57.79^{+0.39}$		$32.70^{-0.34}$	$40.00^{+7.50}$	54.37+1.50
		CoT-Bridge-R	$83.06^{-0.56}$	$65.20^{+1.30}$	$55.84^{-1.56}$			$40.00^{+7.50}$	53.51+0.64
		CoT-Bridge	84.61 ^{+0.99}	68.05 ^{+4.15}	59.29 ^{+1.89}	47.16 ^{+0.39}	34.11 ^{+1.07}	45.00 ^{+12.50}	56.26+3.39

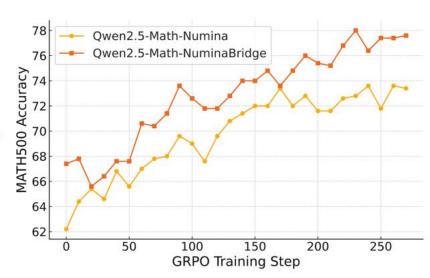
we performed supervised fine tuning (SFT) experiments using MetaMathQA, NuminaMath-CoT datasets and their bridged versions on representative base models.

Performance Drop

Consistent Improvement

- Bridging Thought Leaps using CoT-Bridge consistently improves reasoning performance.
- Accurate leap identification is crucial for effective bridging.
- Zero-shot bridging shows promise but lacks consistency.

CoT-Bridge can serve as a plug-and-play enhancement module that seamlessly integrates into existing training pipelines while delivering consistent performance improvements.


Dataset	Method	GSM8K	MATH	GaoKao	Odyssey	Olympiad	AMC23	Average
Distill	Direct SFT CoT-Bridge	81.86 82.52 ^{+0.66}	68.15 71.50 ^{+3.35}	60.84 66.43 +5.59	48.13 49.16 ^{+1.03}	33.00 34.89 ^{+1.89}	39.37 45.00 ^{+5.63}	55.23 58.25 ^{+3.02}
Reject Sampling	Direct SFT CoT-Bridge		74.90 75.25 ^{+0.35}	64.94 67.47 ^{+2.53}	51.81 51.87 ^{+0.06}	37.63 39.41 ^{+1.78}	50.00 53.13 ^{+3.13}	60.44 61.81 ^{+1.37}

Qwen2.5-Instruct-72B distilled and rejection sampled data

 CoT-Bridge can improve the quality of generated data in knowledge distillation and rejection sampling

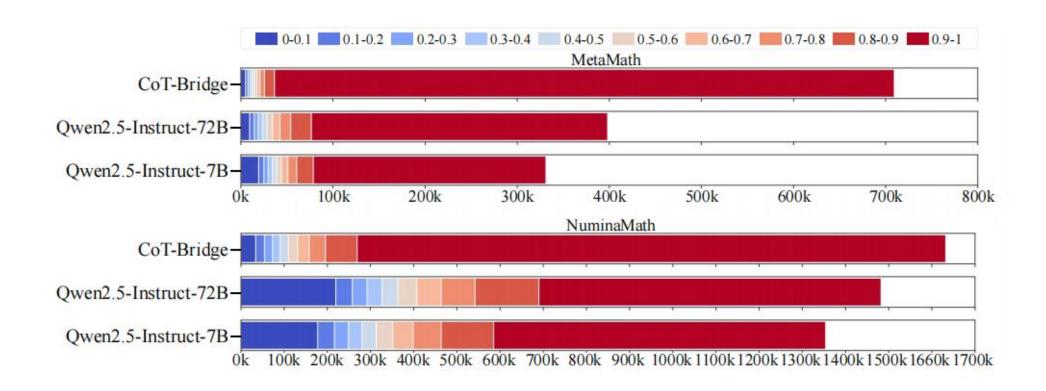
Model	Method	GSM8K	MATH	GaoKao	Odyssey	Olympiad	AMC23	Average
Qwen2.5-Math-Instruct-1.5B Oat-Zero-1.5B Qwen2.5-Math-1.5B	/ Dr. GRPO GRPO	84.80 83.62 82.71	75.80 74.20 74.60	65.50 69.61 64.94	54.52 52.71 49.10	38.10 37.60 35.85	60.00 53.00 50.00	63.12 61.79 59.33
Qwen2.5-Math-Numina Qwen2.5-Math-NuminaBridge	GRPO GRPO	84.31 84.08 ^{-0.23}	74.80 78.20 ^{+3.40}	62.34 67.01 ^{+4.67}	51.94 54.26 ^{+2.32}	39.41 40.30 ^{+0.89}	52.50 60.00 ^{+7.50}	60.88 63.98 ^{+3.10}

• Using bridge-augmented datasets for SFT leads to a higher performance ceiling in subsequent RL.

To evaluate the capability of various methods in CoT Thought Leap Bridge Task, we constructed a standardized evaluation framework on ScaleQM+ test set, covering leap identification and generation quality.

Method	Similarity		Overall [↑]		
1,10,110,0		Pre↑	Rec ↑	Red↓	0,01411
Qwen2.5-Instruct-7B	/	14.15	12.04	34.13	10.54
Qwen2.5-Instruct-72B	/	33.99	33.64	33.73	31.12
CoT-Bridge	/	78.02	78.37	1.61	76.15
	1	20.96	79.64	79.04	75.72
	0.95	23.42	75.07	76.57	71.22
Full-position	0.90	24.81	59.21	74.37	55.9
n n	0.85	19.34	30.17	63.87	28.26
	0.80	7.47	8.65	32.51	7.84

- CoT has the best leap localization
 accuracy and generation quality.
 - Other baselines suffer from high redundancy rates.
 - Redundant steps can easily cause the model to learn repetitive patterns.


- OOD Experiments in Logical Reasoning Tasks (Meta-Llama3.1-8B: 个2.99%, Qwen2.5-Math-1.5B: 个0.99%)
- CoT-Bridge help models master general reasoning structures and enhance generalization capabilities.

Bridge Method	Mertic	FOLIO	LogicQA	PW	ReClor	RuleTaker	Average				
NuminaMath+Meta-Llama3.1-8B											
No Bridge	Accuracy ↑ Invalid ↓	68.15 1.48	34.33 6.3	59.09 0.51	47 2	54.5 0.31	52.61 2.12				
GapBridge	Accuracy ↑ Invalid ↓	74.07 ^{+5.92} 0.74	35.64 ^{+1.31} 4.92	61.52 ^{+2.43} 0.2	50.20 ^{+3.20} 2.2	56.57 ^{+2.07} 0.1	55.60 ^{+2.99} 1.63				
		Numinal	Math+Qwen2	2.5-Math-1.5	В						
No Bridge	Accuracy ↑ Invalid ↓	74.07 1.48	29.72 4.53	55.84 0.3	37.6 1.2	53.05 0.72	50.06 1.65				
GapBridge	Accuracy ↑ Invalid ↓	71.11 ^{-2.96} 1.48	33.10 ^{+3.38} 3.46	58.38 ^{+2.54} 0.3	39.00 ^{+1.40} 1.4	53.67 ^{+0.62}	51.05 ^{+0.99} 1.33				

- **Ablation Study:** Remove one bridging type (begin/middle/end) \rightarrow Fine-tune Qwen2.5-Math-1.5B with same settings.
- All three types of completion have a positive effect on model performance

Delete Pos	Num	Ratio	GSM8K	MATH	GaoKao	Odyssey	Olympiad	AMC23	Average		
Qwen2.5-Math-1.5B+MetaMath											
	1	/	81.39	56.60	49.61	39.66	19.44	28.75	45.91		
- begin	225873	31.84	82.71 ^{+1.32}	$55.85^{-0.75}$	$49.55^{-0.06}$	41.09 ^{+1.43}	$19.22^{-0.22}$	$22.50^{-6.25}$	$45.15^{-0.76}$		
- middle	470541	66.34	$80.97^{-0.42}$	$52.45^{-4.15}$	$49.35^{-0.26}$	$37.14^{-2.52}$	$17.26^{-2.18}$	$27.50^{-1.25}$	$44.11^{-1.80}$		
- end	12908	1.82	$81.14^{-0.25}$	$55.75^{-0.85}$	49.94 ^{+0.33}	$37.02^{-2.64}$	$18.78^{-0.66}$	$28.12^{-0.63}$	$45.13^{-0.78}$		
			Qwen2.	5-Math-1.5	B+Numin	aMath					
	/	/	84.61	68.05	59.29	47.16	33.44	45.00	56.26		
- begin	694887	42.57	$82.60^{-2.01}$	$64.85^{-3.20}$	$58.67^{-0.62}$	$45.48^{-1.68}$	$32.96^{-0.48}$	$38.75^{-6.25}$	$53.89^{-2.37}$		
- middle	906168	55.52	$83.51^{-1.10}$	$63.55^{-4.50}$	$56.43^{-2.86}$	$47.16^{-0.00}$	$28.30^{-5.14}$	$38.13^{-6.87}$	$52.85^{-3.41}$		
- end	31115	1.91	$82.79^{-1.82}$	$64.05^{-4.00}$	$55.97^{-3.32}$	$46.51^{-0.65}$	$27.48^{-5.96}$	$42.50^{-2.50}$	$53.22^{-3.04}$		

- Content Analysis of Bridge: Scoring the content of Bridge using Qwen2.5-Math-PRM-7B.
- CoT-Bridge achieves much higher content quality for Bridge compared to the baseline.

