# Bivariate Matrix-valued Linear Regression (BMLR) Finite-sample performance under Identifiability and Sparsity

Nayel Bettache

Cornell University & Capital Fund Management

NeurIPS 2025

## Problem & Model

#### Motivation

- Modern data often has matrix structure on both sides:
  - spatiotemporal signals, dynamic imaging
  - multivariate longitudinal data, dynamic networks
- Rows / columns encode different dimensions (time, space, conditions, ...).

## Bivariate Matrix-valued Linear Regression (BMLR)

$$X_t \in \mathbb{R}^{m \times q}, \quad Y_t \in \mathbb{R}^{n \times p}, \quad Y_t = A^* X_t B^* + E_t, \quad t = 1, \dots, T.$$

- $A^* \in \mathbb{R}^{n \times m}_+$ : rows have  $\ell_1$ -norm  $1 \Rightarrow$  identifiability, mixing/attention interpretation.
- $B^* \in \mathbb{R}^{q \times p}$ ;  $E_t$ : i.i.d. Gaussian noise.

**Goal:** estimate  $A^*$ ,  $B^*$  with explicit formulas and finite-sample guarantees.



## Naive Approaches vs BMLR Structure

## Naive 1: independent trace regressions

$$[Y_t]_{ij} = \operatorname{Tr}(X_t^{\top} M_{ij}^*) + [E_t]_{ij}, \quad M_{ij}^* \in \mathbb{R}^{m \times q}.$$

- Treats the *np* coordinates independently.
- Ignores correlations and shared structure across entries of  $Y_t$ .

## Naive 2: vectorize everything

$$\operatorname{vec}(Y_t) = (B^*)^\top \otimes A^* \operatorname{vec}(X_t) + \operatorname{vec}(E_t).$$

- Standard multivariate regression on  $vec(X_t)$ .
- Recovering  $A^*, B^*$  from  $\hat{M}$  is a non-convex Kronecker factorization.
- High variance when  $nmpq \gg T$ ; matrix structure is not used explicitly.

Our strategy: stay in matrix form and exploit the bilinear structure  $Y_t = A^* X_t B^*_{\odot}$  directly.

N. Bettache (Cornell & CFM)

## Main Idea: Explicit Estimators via a Factorization

Population (noiseless) model:

$$M_t = A^* X_t B^*, \quad t = 1, \ldots, T.$$

Stack vectorized matrices:

$$\mathbb{M} = \begin{pmatrix} \operatorname{vec}(M_1)^\top \\ \vdots \\ \operatorname{vec}(M_T)^\top \end{pmatrix} \in \mathbb{R}^{T \times np}, \quad \mathbb{X} = \begin{pmatrix} \operatorname{vec}(X_1)^\top \\ \vdots \\ \operatorname{vec}(X_T)^\top \end{pmatrix} \in \mathbb{R}^{T \times mq}.$$

Assume  $\mathbb{X}$  has full column rank and define  $\mathbb{C}:=(\mathbb{X}^{\top}\mathbb{X})^{-1}\mathbb{X}^{\top}\mathbb{M}\in\mathbb{R}^{mq\times np}$ .

**Key factorization:** 

$$\left[\mathbb{C}\right]_{(k,l)}^{(i,j)} = [A^*]_{ik} \left[B^*\right]_{lj},$$

hence  $A^*$  and  $B^*$  can be recovered as simple averages over rows / columns of  $\mathbb{C}$ .

Sample version:

$$\widehat{\mathbb{C}} := (\mathbb{X}^{\top} \mathbb{X})^{-1} \mathbb{X}^{\top} \mathbb{Y} = \mathbb{C} + \mathbb{D}.$$

Plug-in:

$$[\hat{B}]_{ij} = \frac{1}{n} \sum_{i,k} [\widehat{\mathbb{C}}]_{(k,l)}^{(i,j)}, \quad [\hat{A}]_{ik} = \text{(average ratio) clipped to } [0,1].$$

No alternating minimization, no iterative optimization.

◆□ ▶ ◆ ■ ▶ ◆ ■ ◆ 9 Q ○

# Finite-sample Guarantees (Dense & Sparse)

Assume an orthogonal design:

$$\mathbb{X}^{\top}\mathbb{X} = TI_{mq}.$$

Then  $\widehat{\mathbb{C}}$  is matrix-normal with independent Gaussian entries.

#### Dense case

- Explicit non-asymptotic bounds for  $\left\|\hat{B} B^*\right\|_F$ ,  $\left\|\hat{B} B^*\right\|_{\mathrm{op}}$ , and  $\left\|\hat{A} A^*\right\|_+$ .
- Qualitative behavior:
  - errors shrink with sample size T;
  - $\hat{B}$  improves with larger row dimension n ("blessing of dimensionality");
  - $\hat{A}$  benefits from larger p, q, but deteriorates as n, m grow.

## Sparse case

- Hard-thresholded estimators  $\hat{B}^S$ ,  $\hat{A}^S$ .
- Frobenius error scales with the sparsity level  $||B^*||_0$ ,  $||A^*||_0$ .
- Under signal-strength conditions, we recover the exact support with high probability.

# Experiments & Takeaways

## Synthetic experiments

- Randomly generated  $A^*, B^*, X_t$ ; Gaussian noise.
- Study  $\|\hat{A} A^*\|$ ,  $\|\hat{B} B^*\|$  vs. T and dimensions.
- Empirical trends match theory, including the asymmetric roles of  $A^*$  and  $B^*$ .

#### CIFAR-10 image denoising

- $32 \times 32 \times 3$  images; apply noisy linear transforms via  $(A^*)^{-1}$  and  $(B^*)^{-1}$ .
- Learn  $\hat{A}, \hat{B}$  on training images, correct noisy test images via  $X_{\rm corr} = \hat{A}X_{\rm noisy}\hat{B}$ .
- Corrected images are substantially closer to originals (Frobenius distance) across noise levels.

#### **Takeaways**

- ullet BMLR couples both sides of matrix-structured data:  $Y_t = A^*X_tB^* + E_t$ .
- We provide explicit, optimization-free estimators with finite-sample guarantees, dense and sparse.
- Simple procedures already work well on synthetic data and real images.