

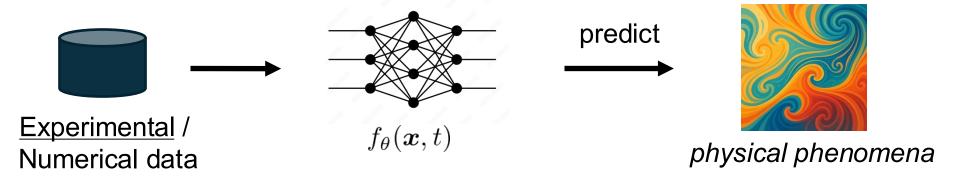
Understanding Generalization in Physics Informed Models through Affine Variety Dimensions

Takeshi Koshizuka (The University of Tokyo)
Issei Sato (The University of Tokyo)

Background: Physics-informed Machine Learning

What is PIML?

- Combine experimental/numerical data and physical constraints
- Incorporate physics laws into model architecture or loss function, etc.



Examples of Physics laws

Differential Equations	Symmetries	Stability
$\partial_t extit{f}_ heta = \mathcal{A} extit{f}_ heta$	$f_{\theta}(g \cdot x) = g \cdot f_{\theta}(x)$	$\lim_{t o\infty}f_{ heta}=f^*$

- Empirically improves generalization & OOD robustness
- But theoretical understanding is limited

The goal is to provide a unified theoretical framework explaining how physics constraints improve generalization.

Formulation: Complexity Error Analysis on PILR

Data

- Target function: f^* s.t. $\mathscr{D}[f^*] \simeq 0$
- Training samples: $\{(x_i, y_i)\}_{i=1}^n$

Observation model:

$$y_i = f^*(x_i) + \varepsilon_i, \qquad \varepsilon_i \sim \mathcal{N}(0, \sigma^2)$$

Physics-informed Linear Regression (PILR)

$$\hat{m{w}} = \mathop{\mathsf{arg\,min}}_{m{w} \in \mathcal{V}(\mathscr{D},\mathcal{B},\mathcal{T}) \cap \mathbb{B}_2(R)} rac{1}{n} \, \| \, m{y} - m{\Phi} m{w} \, \|_2^2$$

Feasible Set Definition

$$\mathcal{V}(\mathscr{D},\mathcal{B},\mathcal{T})\coloneqq\left\{oldsymbol{w}\in\mathbb{R}^d:\langle\mathscr{D}[oldsymbol{w}^ opoldsymbol{\phi}],\psi_k
angle_{\mu_k}=0,orall(\psi_k,\mu_k)\in\mathcal{T},\phi_j\in\mathcal{B}
ight\}$$

	Collocation	Variational
Measure μ_k	Dirac δ_{x_k}	Lebesgue/Borel on Ω
Trial ψ_k	constant or probes $(\psi_k \equiv 1)$	FE basis/test space V_h
Enforcement	pointwise residual $\mathscr{D}[f](x_k) = 0$	weak residual $\int \mathscr{D}[f]\psi_k dx = 0$
Pros	simple, mesh-free	stability, boundary handling, FEM links

Min-Max Complexity Error Analysis

$$\mathcal{E}_{\mathrm{PILR}} = \min_{\widehat{\boldsymbol{w}}} \max_{\boldsymbol{w}^* \in \mathcal{V} \cap \mathbb{B}_2(R)} \|\widehat{\boldsymbol{w}} - \boldsymbol{w}^*\|_2^2$$

Represent physics constraints via a *unified residual form*, integrating **collocation (PINNs)** and **variational (FEM)** approaches.

Main Results

Regularity Assumptions

- **1 Bounded basis:** Each basis function $\phi_j \in \mathcal{B}$ is bounded, i.e., $\sup_{x \in \mathcal{O}} \|\phi(x)\|_2 \leq M_{\phi}$.
- **2** Well-conditioned design: For some $\eta > 0$, the design matrix Φ satisfies

$$\frac{1}{\sqrt{n}}\|\mathbf{\Phi}\mathbf{w}\|_2 \geq \frac{1}{\sqrt{\eta}}\|\mathbf{w}\|_2, \quad \forall \ \mathbf{w} \in \mathbb{B}_2(2R),$$

Estimator stability: The estimator is Lipschitz-continuous w.r.t. the optimal weights:

$$\|\hat{\mathbf{w}}_1 - \hat{\mathbf{w}}_2\|_2 \le (\Gamma - 1)\|\mathbf{w}_1^* - \mathbf{w}_2^*\|_2, \quad \Gamma > 1.$$

Theorem (informal)

Let $\mathcal{V}(\mathcal{D}, \mathcal{B}, \mathcal{T})$ be the $(\beta, d_{\mathcal{V}})$ -regular affine variety. Suppose that

- the basis functions are bounded by a constant,
- the minimum eigenvalue of the design matrix is restricted, and
- the stability condition for the estimator holds.

Then, for $\delta \in (0,1)$, with probability at least $1-\delta$, the minimax risk for PILR satisfies

$$\mathcal{O}\!\left(\sqrt{rac{d_{\mathcal{V}}\log(d_{\mathcal{V}}d)}{n}} + \sqrt{rac{\log2eta}{n}} + 2\sqrt{rac{\log(2/\delta)}{n}}
ight).$$

Main Insight

- The minimax risk depends on the **intrinsic dimension** $d_{\mathcal{V}}$, not the ambient dimension d.
- When the topological complexity β is small:

$$\mathcal{E}_{\mathsf{PILR}} = \mathcal{O}\!\left(\sqrt{rac{d_{\mathcal{V}}\log d_{\mathcal{V}}d}{n}}
ight) \quad \mathsf{vs.} \quad \mathcal{E}_{\mathsf{RR}} = \mathcal{O}\!\left(\sqrt{rac{d}{n}}
ight).$$

■ Embedding physical constraints ⇒ reduced effective hypothesis complexity.

Role of β

- $m{\beta}$ measures the **topological complexity** of the affine variety (sum of Betti numbers). If the operator \mathcal{D} is linear, $\beta = 1$.
- Upper bound via Petrovskii-Oleinik-Milnor inequality:

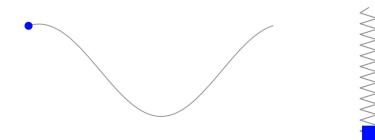
$$\beta \le \rho (2\rho - 1)^{d+1},$$

where ho is the maximal polynomial degree.

 \blacksquare Larger $\rho \Rightarrow$ more holes and disconnected components.

Example

Problem: Harmonic Oscillator



Equation

$$\mathscr{D}[y] = rac{\mathrm{d}^2}{\mathrm{d}t^2} y + rac{k_s}{m_s} y,$$

Analytical solution

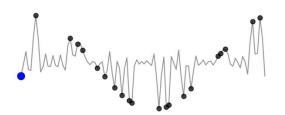
$$y(t) = y_0 \dfrac{\cos(\omega t)}{\omega} + \dfrac{v_0}{\omega} \sin(\omega t), \omega = \sqrt{k_s/m_s}.$$

Basis/Trial Functions

$$\{\phi_j(x)\} = \{1, \cos(\omega_j x), \sin(\omega_j x)\},\$$

 $\psi_k(x) = 1, \; \mu_k = \delta_{x_k}$ (Dirac measure)

Linear Regression w/ Fourier Basis



Complexity error bound

$$\mathcal{O}\left(\sqrt{\frac{d}{n}}\right)$$

When d (number of basis) \gg n (sample size), performance degrades due to overfitting.

Physics-informed Linear Regression

٧S

When $d \gg d_{\mathcal{V}}$ (the dimension of the affine variety), performance improves.

$$\mathcal{O}\left(\sqrt{rac{d_{\mathcal{V}}\log d_{\mathcal{V}}d}{n}}
ight)$$

$$egin{aligned} d_{\mathcal{V}} &= \dim \left(\{ \mathbf{w} \in \mathbb{R}^d : \mathscr{D}[\mathbf{w}^ op \phi](x_k) = 0, \ orall k \}
ight) = 2 \ &= ext{number of basis} : \cos(\omega t) ext{ and } \sin(\omega t) \end{aligned}$$