

CoUn: Empowering Machine Unlearning via Contrastive Learning

Yasser H. Khalil

Mehdi Setayesh

Hongliang Li

Huawei Noah's Ark Lab, Montreal, Canada

E-mail: yasser1.khalil@huawei.ca

Introduction

Data Privacy & Compliance

 Regulations such as the GDPR highlight the growing importance of data protection and responsible AI.

Machine Unlearning (MU)

 Removes the effect of specific training data (forget set) while preserving knowledge from remaining data (retain set).

Exact Unlearning – the Gold Standard

Achieved by retraining from scratch on retain data — accurate but computationally costly.

Approximate Unlearning

Offers an efficient alternative that approximates the retrained model's performance.

Motivation

Retrain Model Insight

 Forget samples are mapped into clusters of retain samples that share the highest semantic similarity.

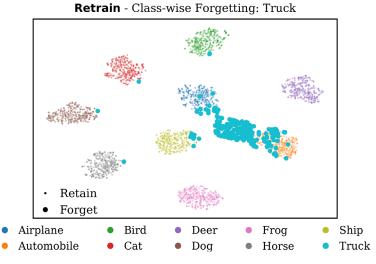


Figure 1. Representation space of the Retrain model (ResNet-18 on CIFAR-10). *Left:* excluding the "truck" class. *Right:* excluding 10% random samples. Larger dots denote forget samples projected into semantically closest retain clusters.

For approximate unlearning to emulate exact unlearning, the model should:

- Correctly classify retain samples.
- Reposition forget samples into clusters of other retain samples with highest semantic similarity.

Methodology

- CoUn operates solely on retain data and integrates two components:
 - Contrastive Learning (CL): Refines the representation space based on semantic similarity.
 - Supervised Learning (SL): Preserves cluster separation.

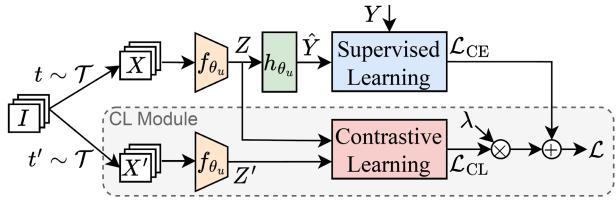


Figure 2. CoUn framework. Two augmented views are generated from a batch of retain images I. The feature extractor f_{Θ_u} produces representations (Z, Z'). The CL module aligns positive pairs and separates negatives, while the supervised head h_{Θ_u} preserves the decision boundaries.

 CL module indirectly pushes the forget representations toward semantically similar retain samples.

Empirical Analysis

 CoUn preserves well-separated retain clusters (high utility) while repositioning forget samples toward semantically similar retain clusters (improved forget quality), effectively approximating exact unlearning.

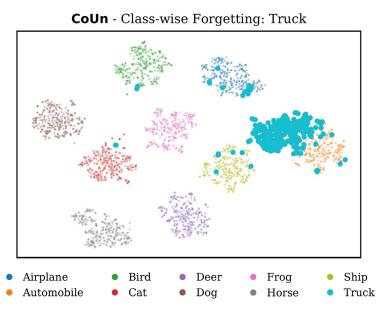


Figure 3. Representation space of CoUn. Similar to Retrain's representation space (Figure 1), CoUn positions forget samples into clusters of semantically similar retain samples while preserving retain cluster structure.

Evaluation Metrics

- MU is assessed using the following key metrics:
 - **Retain Accuracy (RA):** Accuracy of the unlearned model Θ_u on retain data D_r . Utility
 - **Test Accuracy (TA):** Generalization performance of Θ_n on unseen test data.
 - **Unlearn Accuracy (UA):** 1 the accuracy of Θ_n on forget data D_n .
 - Membership Inference Attack (MIA): Identifies whether forget samples were seen during training.
 - **5.** Computation Cost: Number of FLOPs required to obtain Θ_u .
- Average Gap: Measures the unlearning effectiveness of Θ_{ij}

$$Avg. Gap = \frac{1}{4}(|RA - RA^*| + |UA - UA^*| + |TA - TA^*| + |MIA - MIA^*|),$$

where (·)* denotes metrics of the Retrain model.

Forget Quality

Results (1/2)

Performance Comparison of CoUn against baselines.

Table 1. Performance comparison of CoUn to the baseline methods with 10% random data removal. The gap (Δ) and the (best) average gap between each method and the Retrain model are reported.

Dataset & Model	Method	Accuracy (%)			Efficacy (%)	Avg.	Comp. Cost
		Retain $(\Delta \downarrow)$	Unlearn $(\Delta \downarrow)$	Test $(\Delta \downarrow)$	MIA $(\Delta \downarrow)$	Gap ↓	(PFLOPs) ↓
CIFAR-10 ResNet-18	Retrain	$100.00 \pm 0.00 (0.00)$	$4.81 \pm 0.27 (0.00)$	$94.67 \pm 0.24 (0.00)$	$11.02 \pm 0.58 (0.00)$	0.00	27.37
	FT	$99.99 \pm 0.00 (0.01)$	$3.76 \pm 0.31 (1.05)$	$94.70 \pm 0.14 (0.03)$	$9.51 \pm 0.28 (1.51)$	0.65	6.32
	NegGrad+	$99.95 \pm 0.02 (0.05)$	$4.82 \pm 0.24 (0.01)$	$94.32 \pm 0.23 (0.35)$	$9.09 \pm 0.30 (1.93)$	0.58	6.02
	ℓ_1 -sparse	$99.97 \pm 0.01 (0.03)$	$5.40 \pm 0.40 (0.59)$	$93.81 \pm 0.21 (0.86)$	$10.97 \pm 0.35 (0.05)$	0.38	6.92
	SalUn	$99.10 \pm 0.35 (0.90)$	$4.31 \pm 0.42 (0.50)$	$93.84 \pm 0.27 (0.83)$	$11.15 \pm 2.04 (0.13)$	0.59	8.66
	NoT	$99.99 \pm 0.00 (0.01)$	$4.19 \pm 0.25 (0.62)$	$94.65 \pm 0.24 (0.02)$	$10.45 \pm 0.51 (0.57)$	0.30	7.52
	CoUn	$99.99 \pm 0.00 (0.01)$	$4.12 \pm 0.31 (0.69)$	$94.57 \pm 0.24 (0.10)$	$10.81 \pm 0.31 (0.21)$	0.25	8.02

Results (2/2)

Percentage improvement from integrating CoUn's CL module into baselines.

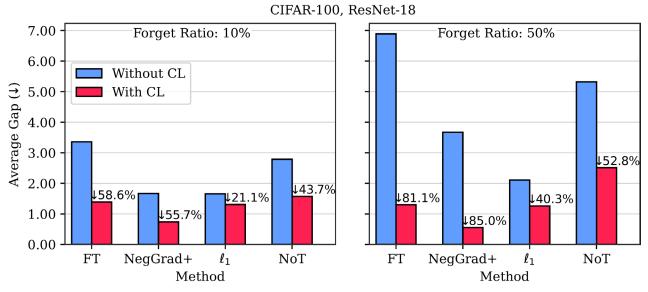


Figure 4. CL integration consistently improves unlearning performance, with larger gains at higher forget ratios (50%).

Conclusion

- CoUn enables effective unlearning by leveraging semantic similarity between retain and forget samples.
 - Uses a CL module on retain data to adjust their representations, and indirectly influences forget representations.
 - Improving forget quality.
 - Uses supervised learning on retain data to preserve their cluster separation.
 - Improving utility.

Thank you!

E-mail: yasser1.khalil@huawei.ca