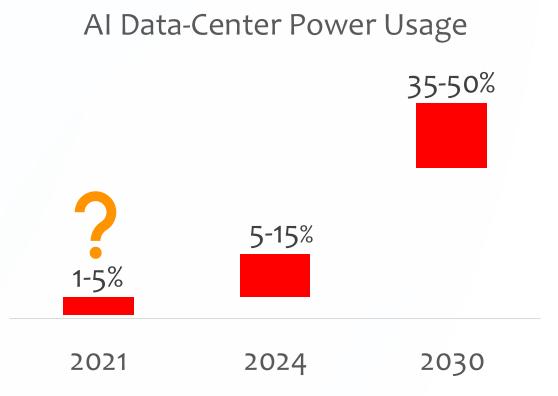

REASONING COMPILER: LLM-Guided Optimizations for Efficient Model Serving

Annabelle Sujun Tang, Christopher Priebe, Rohan Mahapatra, Lianhui Qin, Hadi Esmaeilzadeh

Alternative Computing Technologies (ACT) Lab University of California, San Diego

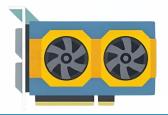


The Shift towards Model Serving

Global AI Inference Market is projected to grow at a CAGR of 18.91% over 2025-2032.

Source: Yahoo Finance

Al-oriented laaS will more than double in 2025–2026; inference is the demand driver.

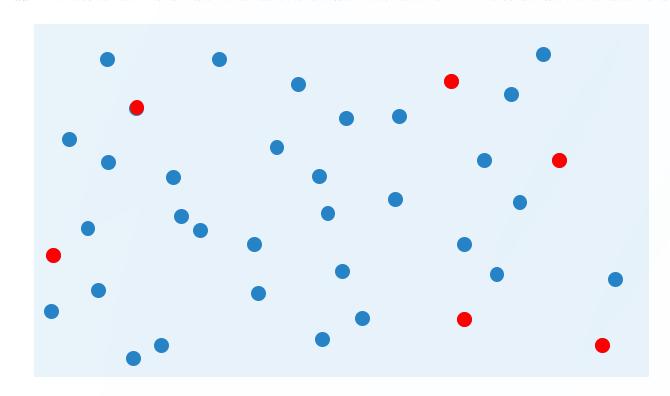

Source: Gartner

The Triangle of Improvement

Algorithm

Hardware

Category I: Rule-Based Compiler Optimizations



Relies on hand-tuning or domainspecific heuristics

Often overfit to a specific workload or hardware target

- + Relatively Fast
- Cannot explore the entirety of search spaces

Category II: Stochastic Search for Compilation

- + Find Higher Quality Optimized Programs
- Sample Inefficient
- Cannot leverage context and interdependence

STOKE (Stochastic Super Optimization) [ASPLOS '13]

- Markov Chain Monte Carlo (MCMC)
- High quality programs often lie in regions separated by lowprobability paths

TVM [OSDI '18], Ansor [OSDI '20], FlexTensor [ASPLOS '20], Tensor Comprehensions [arXiv '18]

- Genetic Algorithm
- Simulated Annealing

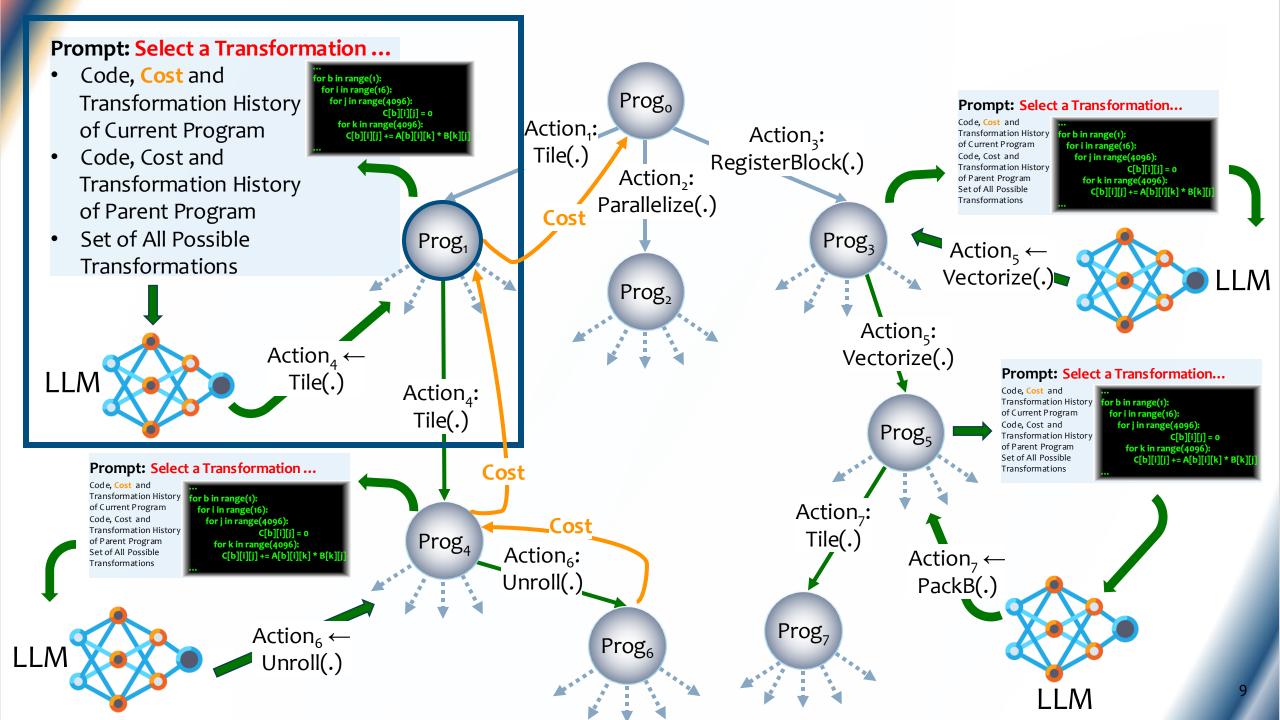
REASONING COMPILER Context-Informed, Guided, Structured Search

Leaps from <u>fully stochastic</u> to <u>structured</u> optimizations

Models optimization as Markov Decision Process

Uses Monte Carlo Tree Search (MCTS) as a planner

- + Find Higher Quality Optimized Programs
- + Sample Efficient


Utilizes LLM reasoning as a guide for Monte-Carlo Tree Search

Can LLM reasoning, without retraining, guide context-sensitive compiler optimizations?

Problem Statement - Neural Code Optimization

```
Self-Attention Layer of Llama-3-8B
. . .
. . .
for b in range(1):
  for i in range(16):
    for j in range (4096):
       C[b][i][j] = 0
       for k in range(4096):
         C[b][i][j] += A[b][i][k] * B[k][j]
. . .
. . .
```

```
Tile
   Tile size for each loop
Parallelize
   Axis, Policy
Vectorize
   Width
Unroll
   Factor
PackB
   k-panel size, j-panel Size
Prefetch
   Target, Distance
RegisterBlock
   m-register Tile Size,
   n-register Tile Size
```


Benchmarks

Self-Attention Layer from Llama-3-8B

Mixture-of-Experts Layer from DeepSeek-R1

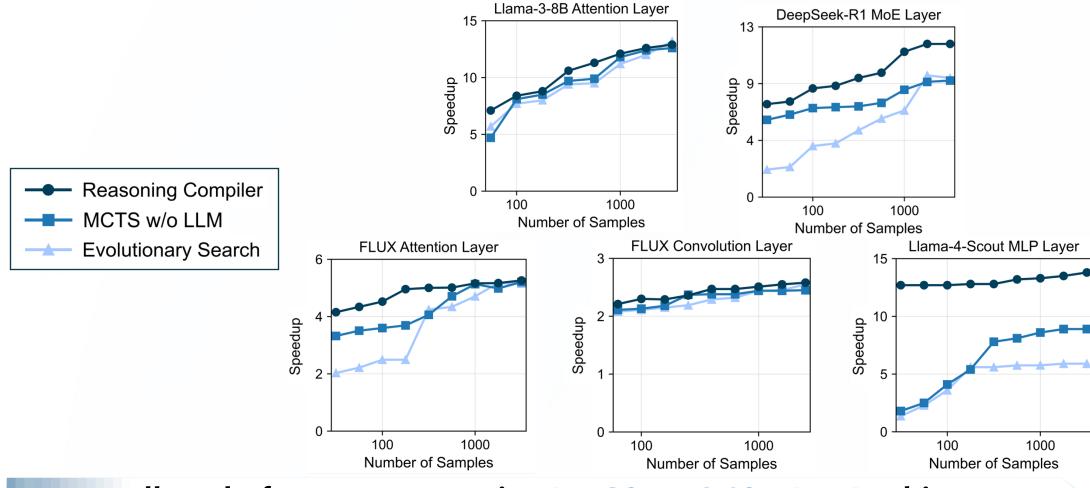
Self-Attention Layer from FLUX (Stable Diffusion)

Convolution Layer from FLUX (Stable Diffusion)

MLP Layer from Llama-4-Scout

End-to-End Llama-3-8B

Amazon Graviton2


AMD EPYC 7R13

Apple M2 Pro

Intel Core i9

Intel Xeon E₃

Higher Speed with Fewer Samples

Across all 25 platform-operator pairs, REASONING COMPILER achieves $5.0 \times$ speedup with $5.8 \times$ fewer samples: $10.8 \times$ improvement in sample efficiency over Evolutionary Search.

Consistent End-To-End Improvements

Hardware Platforms	Evolutionary Search		Reasoning Compiler		Improvement	
	# Samples	Speedup	# Samples	Speedup	Sample Reduction	Sample Efficiency Gain
Amazon Graviton2	4,560	3.7×	1,440	5.1×	3.2×	4.4×
AMD EPYC 7R13	410	2.0×	140	2.2×	2.9×	3.2×
Apple M2 Pro	4,820	2.2×	1,770	3.9×	2.7×	4.8×
Intel Core i9	3,800	2.2×	720	4.9×	5.3×	11.8 $ imes$
Intel Xeon E3	4,640	5.0×	670	5.0×	6.9×	6.9×
Geomean	-	2.8×	-	4.0×	3.9×	5.6×

For Llama-3-8B, REASONING COMPILER achieves $4.0 \times$ speedup using $3.9 \times$ fewer samples achieving $5.6 \times$ sample efficiency over Evolutionary Search

REASONING COMPILER Structured, Sample-Efficient Search

REASONING COMPILER represents an effective leap from stochastic search to LLM-guided, structured planning for compiler optimizations.

REASONING COMPILER formulates optimizations as a sequential, context-aware planning process, pairing LLM-generated proposals with MCTS.

REASONING COMPILER's sample efficiency lowers serving cost, reduces energy, improves system responsiveness, and accelerates training cycles.

The same LLM that guides compilation can accelerate its own inference, creating a virtuous, self-optimizing cycle.

Paper

Github

https://arxiv.org/abs/2506.01374

https://github.com/Anna-Bele/LLM_MCTS_Search

REASONING COMPILER: LLM-Guided Optimizations for Efficient Model Serving

Alternative Computing Technologies (ACT) Lab Contact: Annabelle Sujun Tang, sujun@ucsd.edu