

Learning Multi-Source and Robust Representations for Continual Learning

Fei Ye¹, Yongcheng Zhong¹, Qihe Liu¹, Adrian G. Bors², Jingling Sun¹, Rongyao Hu¹, Shijie Zhou¹

¹University of Electronic Science and Technology of China ²University of York, UK

Background

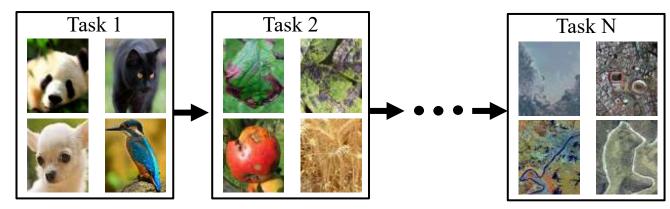
Continual Learning (CL)

Goal: Enable models to learn continuously from a sequence of tasks.

Key challenge: Catastrophic forgetting — new knowledge overwrites old

ones.

Two essential abilities:
Plasticity – adapt quickly to new tasks.
Stability – preserve past knowledge.



Existing Solutions

Category	Key Idea	Limitation		
Rehearsal-based	Store a small memory buffer of old samples	Limited memory → poor scalability		
Dynamic expansion	Add new sub-networks for new tasks	Leads to parameter growth		
Regularization-based	Constrain parameter updates	Over-regularization → reduced plasticity		

Motivation

Limitation of Pretrained Backbones(CL)

- Recent CL methods use pretrained ViTs or CNNs to improve stability.
- However:
 - Relying on a single pretrained backbone restricts adaptability.
 - Fixed representations often fail to generalize to new domains.
 - Updating too many layers → instability; freezing too many → rigidity.

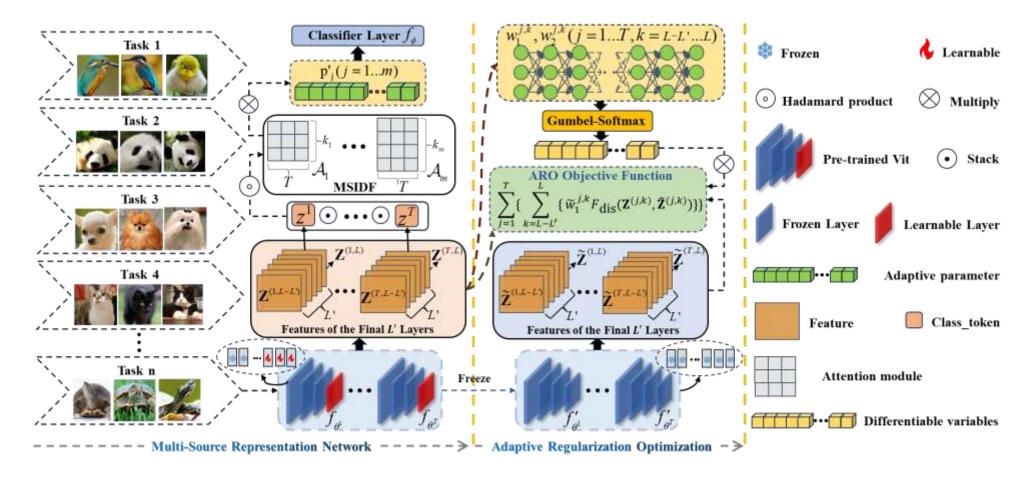
Our Motivation

Can we **leverage multiple pretrained models** to build a **robust and adaptive representation space**, achieving both **stability** and **plasticity** without architectural expansion?

LMSRR Framework

- A novel framework for learning multi-source and robust representations in continual learning.
- Core idea:
 - Fuse features from multiple ViT backbones
 - Adapt representations through dynamic and adaptive optimization

Framework: LMSRR



LMSRR dynamically fuses multi-source features and adaptively regulates representation learning, achieving an optimal balance between stability and plasticity in continual learning.

Method I: Multi-Scale Interaction and Dynamic Fusion

(1) Stack features:

$$\tilde{\mathbf{z}}_s = f_{\theta^1}(\mathbf{x}_s) \bullet \cdots \bullet f_{\theta^T}(\mathbf{x}_s)$$

(3) Adaptive fusion:

- Learn weights $p_j o softmax o p_j' = rac{exp(p_j)}{\sum_{c=1}^m exp(p_c)}$
- Final representation:

$$\mathbf{Z_s} = \sum_{j=1}^m p_j' \cdot \mathbf{Z_s^j}$$

(2) Multi-scale attention:

- Apply m learnable attention modules \mathcal{A}_j with window size k_i .
- Each module highlights relevant cross-backbone patterns via W^j.

Advantages:

- Output dimension fixed (independent of T).
- Automatically focuses on most informative backbone combinations per input.

Goal of MSIDF: Fuse multi-source ViT features without redundancy, with adaptivity.

Method II: Multi-Level Representation Optimization (MLRO)

Mechanism:

- Keep a frozen copy of each ViT from previous task $(f'_{\theta j})$
- For current task, extract features from last *L'* layers of both:
 - Active network: Z^(j,k)
 - Frozen network: $\widetilde{\mathbf{Z}}^{(j,k)}$
- Minimize L2 distance between them:

$$\mathcal{L}_{\text{MLRO}} = \sum_{j=1}^{T} \sum_{k=L-L'}^{L} ||\mathbf{Z}^{(j,k)} - \widetilde{\mathbf{Z}}^{(j,k)}||_{2}$$

Goal of MLRO: Prevent representation drift during fine-tuning → preserve stability.

Method III: Adaptive Regularization Optimization (ARO)

Problem: MLRO applies uniform regularization → may over-constrain some layers.

Solution: Introduce learnable gate per layer to control regularization strength.

Key Idea:

For each layer k in backbone j, learn switch $(w_1^{j,k}, w_2^{j,k})$

Use Gumbel-Softmax to get differentiable weight $\widetilde{w}_1^{\{j,k\}}$

$$w_1^{j,k} = \frac{\exp((\log(w_1^{j,k}) + g_1)/\tau)}{\sum_{t=1}^{2} \{\exp((\log(w_t^{j,k}) + g_t)/\tau)\}},$$

Modify loss:

$$L_{ARO} = \sum_{j=1}^{T} \left\{ \sum_{k=L-L'}^{L} \left\{ w_{l}^{j,k} F_{dis}(\mathbf{Z}^{(j,k)}, \mathbf{Z}^{(j,k)}) \right\} \right\}$$

Why it works:

If a layer is critical for new task:

$$\widetilde{w}_1^{\mathrm{j,k}} \approx 0 \rightarrow \mathrm{less}$$

constraint.

If a layer encodes old knowledge:

$$\widetilde{w}_1^{j,k} \approx 1 \rightarrow \text{strong}$$

constraint.

Experiments Results

Standard datasets results

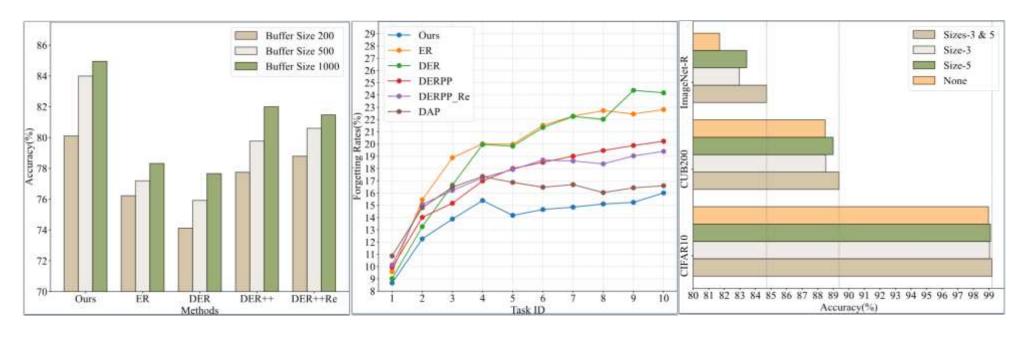
Buffer	Method	CIFA	AR-10	Tiny In	R-MNIST		
		Average	Last	Average	Last	Domain-IL	
	EWC [51]	68.29±3.92	97.07±0.74	19.20±0.31	75.15±3.18	77.35±5.77	
ā	SI [63]	68.05 ± 5.91	94.18 ± 0.88	36.32 ± 0.13	65.80 ± 3.25	71.91 ± 5.83	
	LwF [37]	63.29 ± 2.35	96.75 ± 0.35	15.85 ± 0.58	77.95 ± 3.60	12	
	PNN [50]	95.13 ± 0.72	96.63 ± 0.10	67.84 ± 0.29	69.03 ± 1.01	-	
	DAP [27]	97.13 ± 2.06	96.05 ± 3.39	92.49 ± 0.60	94.95 ± 1.20	88.58 ± 2.53	
200	ER [49]	91.19±0.94	97.50±0.35	38.17±2.00	79.40±0.28	85.01±1.90	
	GEM [39]	90.44 ± 0.94	96.60 ± 0.35	-	*	80.80 ± 1.15	
	A-GEM [12]	83.88 ± 1.49	97.90 ± 0.07	22.77 ± 0.03	78.65 ± 3.32	81.91 ± 0.76	
	iCaRL 48	88.99 ± 2.13	97.07 ± 0.32	28.19 ± 1.47	47.45 ± 0.78		
	FDR [7]	91.01 ± 0.68	97.78 ± 0.24	40.36 ± 0.68	81.40 ± 0.70	85.22 ± 3.35	
	GSS [3]	88.80 ± 2.89	97.42 ± 0.24	2	=1	79.50 ± 0.41	
	HAL [1]	82.51 ± 3.20	94.60 ± 0.14	2		84.02 ± 0.98	
	DER [8]	91.40 ± 0.92	97.80 ± 0.28	40.22 ± 0.67	79.15 ± 0.21	90.04 ± 2.61	
	DER++ [8]	91.92 ± 0.60	97.72 ± 0.38	40.87 ± 1.16	78.35 ± 0.49	90.43 ± 1.87	
	DER++(re) [56]	92.01 ± 3.03	97.65 ± 3.03	47.61 ± 8.87	81.40 ± 1.41	91.64 ± 2.26	
	Ours	98.85 ± 0.05	99.35 ± 0.21	92.08 ± 0.31	96.00 ± 0.01	94.20 ± 1.24	
	ER [49]	93.61±0.27	97.15±0.28	48.64±0.46	80.80±1.69	88.91±1.44	
	GEM [39]	92.16 ± 0.69	96.63 ± 0.17	2	23	81.15 ± 1.98	
	A-GEM [12]	89.48 ± 1.45	97.40 ± 0.78	25.33 ± 0.49	81.00 ± 0.42	80.31 ± 6.29	
	iCaRL 48	88.22 ± 2.62	96.57 ± 0.10	31.55 ± 3.27	50.65 ± 1.20	92	
500	FDR [7]	93.29 ± 0.59	97.32 ± 0.24	49.88 ± 0.71	81.10 ± 0.56	89.67 ± 1.63	
	GSS [3]	91.02 ± 1.57	96.97 ± 0.24	2	23	81.58 ± 0.58	
	HAL [II]	84.54 ± 2.36	94.22 ± 0.60			85.00 ± 0.96	
	DER 🔞	93.40 ± 0.39	97.90 ± 0.28	51.78 ± 0.88	79.30 ± 1.13	92.24 ± 1.12	
	DER++ [8]	93.88 ± 0.50	98.10 ± 0.01	51.91 ± 0.68	76.20 ± 5.23	92.77 ± 1.05	
	DER++(re) [56]	93.06 ± 0.38	97.75 ± 0.38	54.06 ± 0.79	79.65 ± 1.34	93.28 ± 0.75	
	Ours	99.15 ± 0.05	99.48 ± 0.04	92.75 ± 0.32	96.23 ± 0.40	96.97 ± 1.58	
1000	ER 49	95.34 ± 0.16	97.67 ± 0.67	55.92±0.90	80.30 ± 0.82	90.42±1.07	
	GEM [39]	93.67 ± 0.32	97.37 ± 0.17	-	=	81.15 ± 1.98	
	A-GEM [12]	85.61 ± 2.01	97.45 ± 0.42	24.29 ± 1.28	79.65 ± 2.19	81.30 ± 5.33	
	iCaRL [48]	91.40 ± 1.06	96.85 ± 0.35	63.87 ± 0.25	54.00 ± 2.82	-	
	FDR [7]	94.02 ± 0.64	97.60 ± 0.56	56.05 ± 0.71	80.25 ± 0.49	91.68 ± 1.01	
	GSS [3]	91.79 ± 2.16	96.10 ± 1.70	•	-	82.25 ± 2.42	
	HAL [II]	87.33 ± 1.46	92.27 ± 3.21	+	-	89.33 ± 2.01	
	DER 🔞	92.33 ± 0.61	97.72 ± 0.07	56.62 ± 1.13	78.50 ± 0.42	93.13 ± 0.28	
	DER++ [8]	94.99 ± 0.26	97.94 ± 0.08	58.05 ± 0.52	79.95 ± 0.35	93.82 ± 0.39	
	DER++(re) [56]	93.66 ± 1.00	97.40 ± 0.01	61.91 ± 1.15	80.45 ± 3.18	93.37 ± 0.58	
	Ours	99.21 ± 0.06	99.43 ± 0.03	93.24 ± 0.24	96.10 ± 0.57	97.05 ± 0.04	

Experiments Results

Complex datasets results

Method	CIFAR-100		CUB-200		Imagenet-R		Cars196	
	Average	Last	Average	Last	Average	Last	Average	Last
ER [49]	73.37±0.43	93.35±1.34	30.57±4.81	35.57±14.86	24.85±4.06	45.85±0.01	30.52±4.4	54.32±5.07
A-GEM [12]	48.06 ± 0.57	92.80 ± 0.32	13.22 ± 0.31	42.18 ± 0.01	16.87 ± 2.65	47.56 ± 12.31	8.07 ± 0.15	16.45 ± 7.41
FDR [7]	76.29 ± 1.44	93.60 ± 1.34	23.94 ± 0.07	45.58 ± 0.19	15.74 ± 3.69	42.14 ± 10.75	31.41 ± 1.30	58.36 ± 1.17
GSS [3]	57.50 ± 1.93	92.80 ± 2.98	27.04 ± 0.28	42.01 ± 0.08	17.83 ± 0.88	33.44 ± 6.75	34.67 ± 2.27	56.80 ± 4.15
DER [8]	74.93 ± 1.06	93.25 ± 0.35	26.19 ± 2.07	51.79 ± 1.08	18.26 ± 1.67	25.26 ± 0.47	39.75 ± 0.36	68.02 ± 5.20
DER++ [8]	75.64 ± 0.60	92.60 ± 0.14	33.40 ± 1.48	49.83 ± 1.63	22.87 ± 5.83	43.10 ± 10.51	35.39 ± 3.38	60.56 ± 8.45
DER++refresh [56]	77.71 ± 0.85	93.40 ± 1.13	35.77 ± 3.20	50.85 ± 0.47	23.74 ± 3.03	31.00 ± 0.01	33.94 ± 2.46	60.29 ± 4.73
CoFiMA [41]	94.21 ± 0.47	96.13 ± 0.59	90.66 ± 0.76	92.54 ± 0.28	83.76 ± 0.53	85.86 ± 0.58	87.28 ± 0.54	90.33 ± 0.45
DAP [27]	90.11 ± 0.33	92.30 ± 2.12	71.83 ± 1.44	72.23 ± 2.85	83.22 ± 1.25	84.61 ± 2.85	39.79 ± 1.85	65.35 ± 2.21
L2P [57]	95.36 ± 0.12	96.80 ± 0.14	86.30 ± 0.21	90.81 ± 0.24	86.01 ± 0.30	87.50 ± 0.90	79.55 ± 0.86	84.45±0.12
Ours	95.76 ± 0.08	98.70 ± 0.37	88.91 ± 0.64	94.31 ± 0.12	84.35 ± 0.52	88.43 ± 0.15	90.14 ± 0.06	95.32 ± 0.39

Ablation Study



- (a) Same backbone comparison.
- (b) The forgetting curve.

- (c) Configuration comparison.
- (a) Comparison of performance of various models with varying buffer sizes on ImageNet-R, where each model uses the same backbone. (b) Comparison of forgetting curves of the proposed approach with other benchmark methods on ImageNet-R. (c) Performance variations of the proposed MSIDF method under different configurations.

Conclusion

- We propose LMSRR, a novel continual learning framework that orchestrates multiple pre-trained ViTs to learn robust, adaptive representations.
 - Our method introduces three key innovations:
- MSIDF: Dynamically fuses multi-source features via learnable attention and adaptive weighting.
- MLRO: Preserves stability by minimizing representation drift across tasks.
- ARO: Relieves over-regularization through layer-wise adaptive gating.
- ☑ LMSRR achieves state-of-the-art performance without expanding the model or using task-specific parameters.