

Forecasting in Offline Reinforcement Learning for Non-stationary Environments

Suzan Ece Ada Boğaziçi University University of Tübingen

Georg Martius *University of Tübingen*

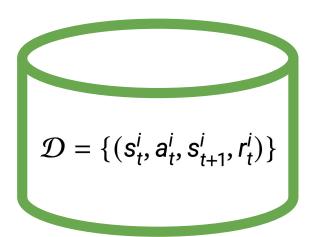
Emre Uğur Boğazici University

Erhan Öztop Osaka University Özyeğin University

Offline Reinforcement Learning (RL)

- Learning a policy from previously collected datasets without real-world interaction.
- The dataset $\mathcal{D} = \{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)\}$ consists of MDP tuples generated by a behavior policy $\pi_{\beta}(\mathbf{a}|\mathbf{s})$.
- Avoids expensive and risky data collection.

Aim: Improve upon the behavior policy used for data collection.



Assumes stationarity or full observability during training and at test time.

Non-stationary Environments

Each component of the underlying MDP or POMDP can evolve over time.

[Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. Towards continual reinforcement learning: A review and perspectives., 2022]

$$(S(t), \mathcal{A}(t), \mathcal{T}(t), \mathcal{R}(t), \mathbf{x}(t), O(t))$$

Standard Offline RL Fails with Non-stationary Perturbations

Standard offline RL assume stationarity or full observability during training and at test time.

Robust offline RL addresses settings with perturbed states at test-time (e.g., Gaussian or adversarial noise). The real world is non-stationary.

How can we handle non-stationary perturbations?

We need test-time adaptation without re-training and presupposing any specific pattern of future non-stationarity during training.

Image generated by Gemini

Forecasting in Offline Reinforcement Learning for Non-stationary Environments

Forecasting in Non-stationary Offline RL (FORL) tackles the foundational challenge of additive episodic biases in the observation function.

Al Assistants (LLMs)	♦ Healthcare & Finance	andustrial Robots
Semantic or contextual bias	Data may be withheld (privacy/regulations).	Sensors drift. Robots require daily calibration offsets.

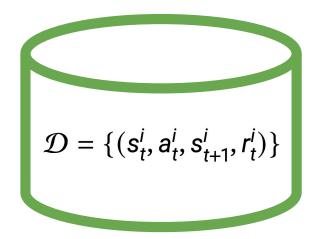
Standard noise-driven or parametric state-estimation techniques, which typically rely on smoothly varying or randomly perturbed functions, cannot reliably identify persistent, episode-wide offsets that are not available after episode terminates.

Problem Statement

Training

Offline dataset $\mathcal{D} = \{(s_t^i, a_t^i, s_{t+1}^i, r_t^i)\}$ from a stationary environment.

No knowledge of how offsets evolve in the future during training. Train an offline RL policy π_{ϕ} and a FORL diffusion model (FORL-DM) using \mathcal{D} .



Test Environment

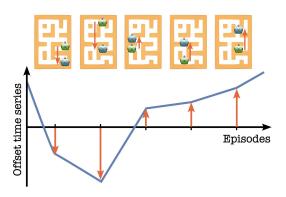
At test time, the agent faces an infinite sequence of POMDPs $\{\hat{\mathcal{M}}_j\}_{j=1}^{\infty}$. Each POMDP \mathcal{M}_j is described by a 7-tuple [Kaelbling et al., 1998]:

$$\hat{\mathcal{M}}_{j} = (\mathcal{S}, \mathcal{A}, O_{j}, \mathcal{T}, \mathcal{R}, \rho_{0}, \mathbf{x}_{j}),$$

where S, \mathcal{A} , transition function \mathcal{T} and the reward function \mathcal{R} remain identical to the training MDP.

 ${f x}$ is the **deterministic** observation function $({f x}:\mathcal{S} o O)$

[Bonet, 2012, Khetarpal et al., 2022] that evolves.



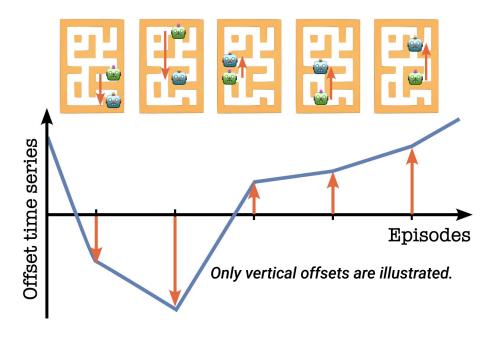
B. Bonet, Deterministic POMDPs revisited,

Test Environment: Time-varying Unknown Process

The non-stationarity is driven by a time-varying, unknown process:

- Each **episode** j is characterized by an **unknown** offset b^j added to the true state: $o_t = s_t + b^j$.
- The initial state distribution ρ_0 is uniform, providing no information about the offset.
- The offsets originate from **real-world time-series** $(...,b^{j-1},b^j,b^{j+1},...)$
- The agent only sees the sequence of biased observations $\{o_t\}$.

The agent must act effectively from the onset of each episode, despite being "lost."

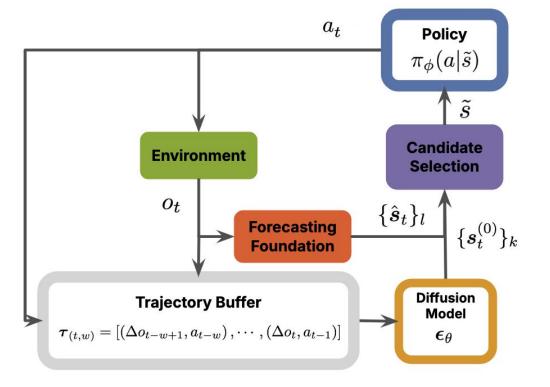


(1,1) Ground truth offsets are hidden throughout the evaluation episodes.

Overview of FORL Framework at Test-time

Forecast offsets over next *P* episodes (zero-shot).

- The observations are processed by both the trajectory buffer and the time-series forecasting foundation module.
- Observation changes and actions sampled from the **policy**, $(\Delta o_t, a_t)$ are stored in the trajectory buffer.
- The diffusion model generates candidate states $\{s_t^{(0)}\}_k$ conditioned on $\tau_{(t,w)}$.
- The candidate selection module then generates the estimated \tilde{s}_t .

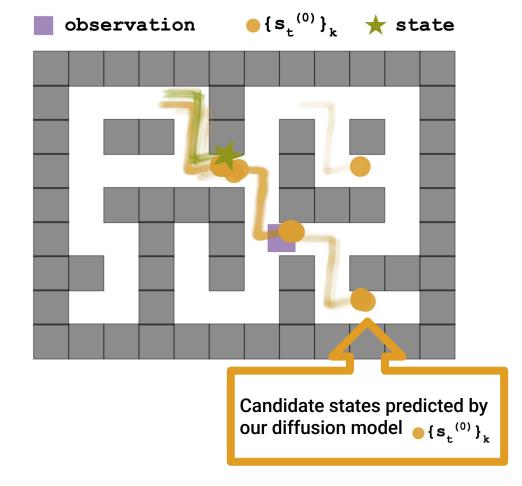


Candidate State Generation: Diffusion Model

How can an agent infer its location when the state is subject to a

large unknown offset?

- An agent observes a sequence of its own actions and the resulting changes in its (biased) observations.
- This action-effect history, $(\Delta o, a)$, is **invariant** to the offset b^{j} .



Candidate State Generation: Diffusion Model

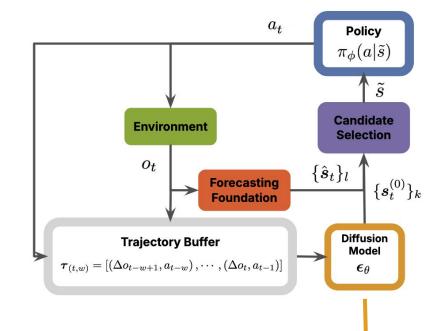
We model the **multi-modal distribution** of plausible states using a conditional diffusion model.

1. Define the **agent's recent history** as a trajectory $\tau_{(t,w)}$ of the past w action-effect Δo_t pairs:

$$\boldsymbol{\tau}_{(t,w)} = [(\Delta o_{t-w+1}, a_{t-w}), \dots, (\Delta o_t, a_{t-1})]$$

2. Train the conditional diffusion model FORL-DM to generate plausible states s_t conditioned on this history using the **stationary** offline RL dataset.

Goal: Learn $p(s_t \mid \tau_{(t,w)})$



At test time, this model acts as a powerful inference engine, generating a set of k plausible state candidates $\{\mathbf{s}_t^{(0)}\}_k$ from the agent's real-time, biased observations and actions.

Forecasting Foundation Model

We use a probabilistic, zero-shot foundation model (Lag-Llama [Rasul et al., 2023]) to forecast future offsets based on past history.

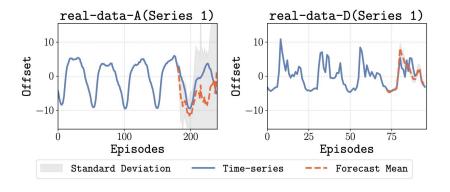
• **Input:** A context window of *C* past, known offsets:

$$\{b^{j-C},\ldots,b^{j-1}\}$$

Output: A probabilistic forecast of I samples for the next P episodes:

$$\{\hat{b}_l^j,\ldots,\hat{b}_l^{j+P-1}\}$$

The model is **univariate**, and each dimension of the offset vector b^{j} is forecast independently.



Candidate Selection: Dimension-wise Closest Match (DCM)

DCM is a simple and light-weight approach to adaptively fuse samples from 2 sources.

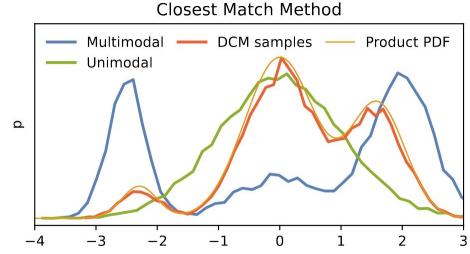
Let $\mathcal{D}_{\text{Diffusion}} = \{\mathbf{x}_1, \dots, \mathbf{x}_k\}, \quad \mathcal{D}_{\text{Forecaster}} = \{\mathbf{y}_1, \dots, \mathbf{y}_l\}, \text{ where } \mathbf{x}_i, \mathbf{y}_i \in \mathbb{R}^n. \text{ Then DCM constructs } \mathbf{z} \in \mathbb{R}^n \text{ by }$

$$z_d = y_{j^*(d),d}$$
 where $j^*(d) = \arg\min_{j} \left(\min_{i} |x_{i,d} - y_{j,d}| \right)$,

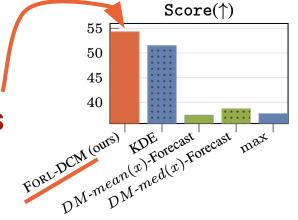
where $d = 1 \dots n$ are the dimensions.

For each dimension d, we choose the sample from $\mathcal{D}_{\mathsf{Forecaster}}$ that has a closest sample in $\mathcal{D}_{\mathsf{Diffusion}}$.

Highest performance compared to standard approaches No hyperparameters & No fallback mechanism



Distribution of samples produced by DCM Histograms for 10k samples



Experimental Setup and Baselines

FORL is plug and play for different offline RL algorithms.

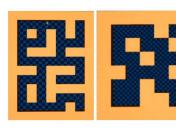
FORL- π vs. baselines:

- \bullet π
- π -Lag[Rasul et al.2023]
- $\pi^{(*)}$ -DMBP[Yang et al.,2024]-Lag[Rasul et al.2023] (*) $\pi \in \{DQL, TD3BC, RORL, IQL\}$

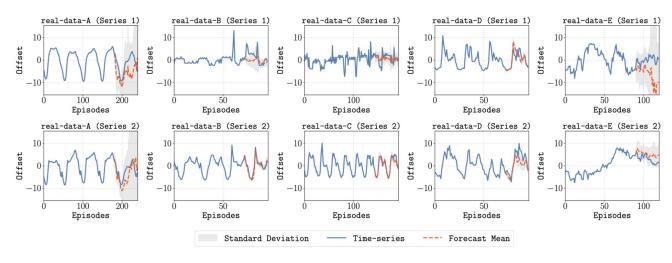
Offline RL Datasets

OGBench [Park et al., 2025a]

D4RL [Fu et al., 2020]



Time-series offsets from energy and finance data GluonTS [Alexandrov et al.,2020]

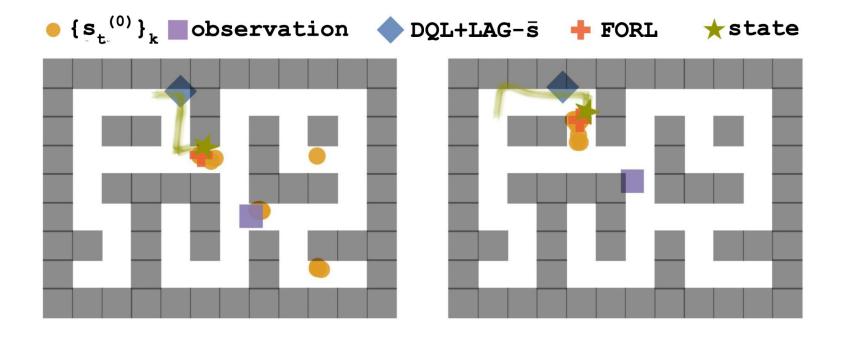


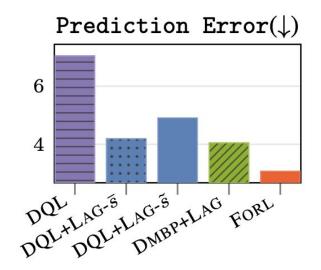
State Prediction Error

Visualization of predicted states and true state ★

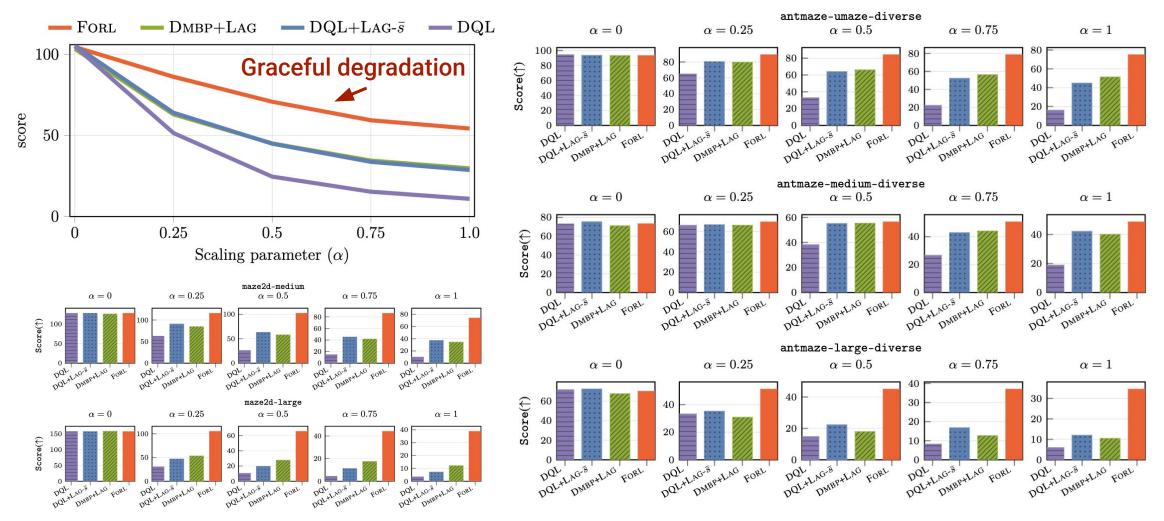
FORL is the closest to the true state

FORL has the lowest prediction error



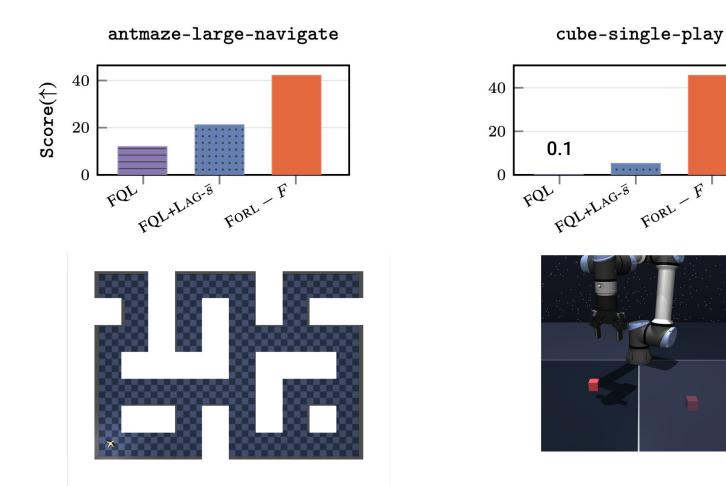


How gracefully does performance degrade as the offset magnitude α is scaled from 0 (no offset) \rightarrow 1?



13

OGBench: FORL Outperforms the Baselines



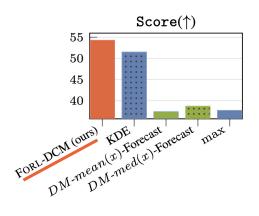
Park, Seohong, Qiyang Li, and Sergey Levine. "Flow q-learning." ICML 2025

Park, Seohong and Frans, Kevin and Eysenbach, Benjamin and Levine, Sergey, OGBench: Benchmarking Offline Goal-Conditioned RL,ICLR2025

Thank you! We invite you to our project web-page!

https://sites.google.com/view/forecastrl

Dimension Wise Closest Match



Can FORL serve as a plug-and-play module for different offline-RL algorithms without retraining?

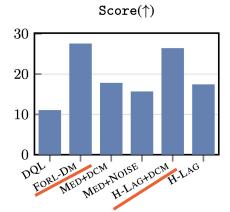
Suzan Ece Ada Boğaziçi University University of Tübingen

Georg Martius University of Tübingen

Emre Uğur Boğazici University

Erhan Öztop
Osaka University
Özyeğin University

What if we do not have access to the past offsets?



What if the offset changes are "in-episode" every f=50 timesteps?

Score f=50 (↑)

