Mitigating Forgetting in LLM via Low-Perplexity Token Learning

Chao-Chung Wu ¹, Zhi Rui Tam^{1, 2}, Chieh-Yen Lin¹, Yun-Nung Chen², Shao-Hua Sun^{1, 2}, Hung-yi Lee ²

¹Appier Al Research ²National Taiwan University

Background

 High quality fine-tuning data distilled by LLM brings significant improvements of higher target task performance and less non-target task forgetting¹.

 It is not explored how generated data is favorable of training even though the data brings different context, generally fits different scales of models and is not intentionally trained for recovering non-target

tasks...

TL;DR

In this paper, we

- bridge perplexity of tokens as a criteria of training data with the phenomena of catastrophic forgetting after training.
- proposed STM, a practical, low-cost alternative to expensive synthetic generated data methods for maintaining competitive performance after training.
- found STM's generalization across models scales & families, training strategies and different domains of tasks.

Typical LLM generated data

Self-Output [Ren et al. and Trummer]

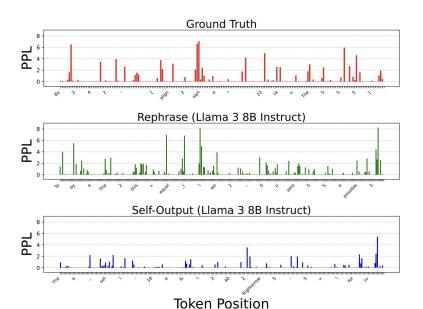
 High quality synthetic label output of LLM, which is verified by ground truth answers.

Rephrase [Yang et al.]

- LLM output by giving instruction and ground truth, which is also verified by ground truth sanity check.
- Generated data v.s. Human annotation (Ground Truth)?
 - need verification on answers (reasoning path is harder to check)
 - hallucination from LLM generation

Why LLM generated data might improve performance?

- Distillation brings low-perplexity intrinsically. e,g., math arithmetic reasoning, coding tasks, knowledge QA tasks.
- Low perplexity implies fewer model parameter changing of training
 → fewer non related tasks are affected.



Data	Method	Avg. PPL
MBPP	Ground Truth Rephrase Self-Output	4.83 (7.04) 1.69 (0.16) 1.16 (0.01)
MATH	Ground Truth Rephrase Self-Output	2.45 (0.81) 2.11 (9.28) 1.34 (0.03)

A critical criteria of data to affect forgetting: Perplexity

- Perplexity difference in Human annotated data and LLM generated data
- problem: How to scale perplexity without changing context of training data?

Question: Given a mathematics problem, determine the answer.\nProblem: Let the reciprocals of the roots of $5x^2 + 3x + 4$ be α and β . Evaluate $\alpha + \beta$.\nAnswer:\$

Ground Truth: Denote the roots of $5x^2 + 3x + 4$ by a and b. We have that $\alpha = \frac{1}{a}$ and $\beta = \frac{1}{b}$. So, $\alpha + \beta = \frac{1}{a} + \frac{1}{b} = \frac{a+b}{ab}$. Now, we know that $a+b = \frac{-3}{5}$ and $ab = \frac{4}{5}$ by the relationship between

sum/products of roots and the coefficients of a polynomial. Hence $\alpha + \beta = \frac{a+b}{ab} = -\frac{3}{4}$

Self-Output (Llama 3 8B Instruct): Let r_1 and r_2 be the roots of $5x^2 + 3x + 4$. Then, by Vieta's formulas, we have $r_1 + r_2 = -\frac{3}{5}$ and $r_1 r_2 = \frac{4}{5}$. Let $\alpha = \frac{1}{r_1}$ and $\beta = \frac{1}{r_2}$. Then, we have

$$\alpha + \beta = \frac{1}{r_1} + \frac{1}{r_2} = \frac{r_2 + r_1}{r_1 r_2} = \frac{-\frac{3}{5}}{\frac{4}{5}} = \boxed{-\frac{3}{4}}$$

STM: Selective Token Masking

- Select high perplexity tokens with a fixed criteria, say 2.5
- Masking high PPL tokens in fine-tuning stage to block back propagation.

User: Let the reciprocals of the roots of $5x^2 + 3x + 4$ be α and β . Evaluate $\alpha + \beta$ **Assistant:** Denote the roots of $5x^2 + 3x + 4$ by a and b. We have that $\alpha = 1/a$ and $\beta = 1/b$. So, $\alpha + \beta = 1/a + 1/b = (a+b)/(ab)$. Now, we know that a+b = -% and ab = % between of roots and coefficients of a ence $\alpha + \beta = (1+b)/ab = 1$

STM: Selective Token Masking

- A simple yet efficient way to filter high ppl tokens from GT data.
 - no need for pretraining an LLM/reference model from high quality data or low loss data.

Ground Truth Den ote the roots of $5x^2 + 3x + 4$ as a and b. We have that \apha = \frac{1}{a}, \beta = \frac{1}{b} **X**8 Selective Token Masking skip these tokens $\left[x_{6}\right]$ Token Position $\mathcal{L}_{\text{STM}}(\theta) = \frac{\sum_{t=1}^{N} \mathbb{1}\{-\log p_{\theta}(w_{t} \mid w_{< t}) \leq \log \tau\} \left(-\log p_{\theta}(w_{t} \mid w_{< t})\right)}{\max \left(1, \sum_{t=1}^{N} \mathbb{1}\{-\log p_{\theta}(w_{t} \mid w_{< t}) \leq \log \tau\}\right)}$

Experiment: Is STM general to different model & scales?

- comparable results of STM to Self-Output performance in terms of
 - target improvement (TI)
 - changes on non-target degradation (BWT)
- From **2B~9B across** Llama 3, Gemma 2, Mistral, OLMo 2 model families
 - MBPP (coding task) and MATH (arithmetic reasoning) as training tasks.
 - testing data (MBPP or MATH), GSM8k, BIRD, IFEval, safety as testing tasks for TI and BWT calculation

$$\mathbf{TI} = (a_{target}^{(train)} - a_{target}^{(original)}) / a_{target}^{(original)}.$$

$$\mathbf{BWT} = \frac{1}{T-1} \sum_{i=1}^{T-1} (a_i^{(train)} - a_i^{(original)}) / a_i^{(original)}.$$

Experiment: Is STM general to different model & scales?

From 2B~9B across Llama 3, Gemma 2, Mistral, OLMo 2 model families

Model	Target task	Method	BWT(%)	TI (%)	Cost (GPU hours)
		Baseline Fine-tuning	-38.19	-21.76	0
	MBPP	Self-Output	-8.10	5.70	12 Hours
	WIDI I	Rephrase	-3.23	-4.69	30 Minutes
Gemma 2 IT 2B		$STM_{\tau=2.5}$ (Ours)	0.42	0.00	5 Minutes
		Baseline Fine-tuning	-36.68	-22.78	0
	MATH	Self-Output	-1.73	9.06	\geq 2 Days
	MAIH	Rephrase	-14.06	-28.83	39 Minutes
		$STM_{\tau=2.5}$ (Ours)	-2.93	7.83	8 Minutes
		Baseline Fine-tuning	-34.71	-2.23	0
	MBPP	Self-Output	3.09	1.55	16.8 Hours
		Rephrase	-5.32	-9.58	36.8 Minutes
Llama 3 8B Instruct		$STM_{\tau=2.5}$ (Ours)	-0.16	3.20	4.5 Minutes
		Baseline Fine-tuning	-14.12	-17.83	0
	MATH	Self-Output	0.31	9.55	≥2 Days
	MAIH	Rephrase	-1.09	4.78	29.3 Minutes
		$\overline{\text{STM}}_{\tau=2.5}$ (Ours)	-0.30	6.37	7 Minutes

Experiment: Is STM general to different model & scales?

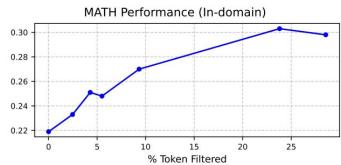
From 2B~9B across Llama 3, Gemma 2, Mistral, OLMo 2 model families

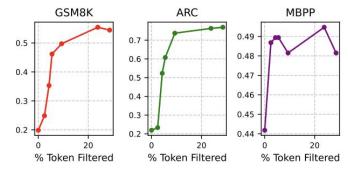
New Model	TI (%) I	BWT (%)
OLMo 2 7B Instruct Baseline Fine-tuning $STM_{\tau=2.5}$ (25.83%)	-11.64 - 6.12	-9.05 -0.50
Gemma 2 IT 9B Baseline Fine-tuning $STM_{\tau=2.5}$ (20.84%)	7.14 13.49	4.67 2.58

Optimal choice of PPL threshold and PPL calculation

- filter out about 20~24% of high ppl tokens, stm gains it in-domain and out-of-domain task performance optimally.
- calculation of ppl by the same model is better than a larger one.

Configuration	BWT(%)	TI (%)
$ ext{STM}_{ au=2.5,high}$	0.4	0.0
$ ext{STM}_{ au=2.5, random}$	-8.6	-15.6
${ m STM}_{ au=2.5,low}$	-7.9	-18.7
Baseline Fine-tuning	-38.2	-25.2
$STM_{\tau=1000}$ (6.26%)	-2.9	-11.4
$STM_{\tau=25}$ (12.34%)	-2.5	-8.8
$STM_{\tau=10}$ (15.1%)	-0.7	-10.4
$STM_{\tau=2.5}$ (23.8%)	0.4	0.0
$STM_{\tau=1.5}$ (26.1%)	-0.3	-0.5
$STM_{9B\tau=2.5}$ (23.8%)	-3.8	-7.3

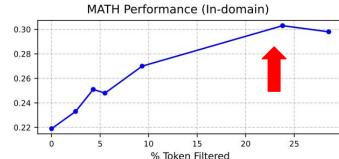


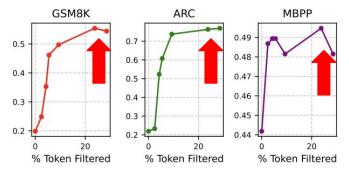


Optimal choice of PPL threshold and PPL calculation

- filter out about 20~24% of high ppl tokens, stm gains it in-domain and out-of-domain task performance optimally.
- calculation of ppl by the same model is better than a larger one.

Configuration	BWT(%)	TI (%)
$STM_{ au=2.5,high}$	0.4	0.0
${ m STM}_{ au=2.5, random}$	-8.6	-15.6
${ m STM}_{ au=2.5,low}$	-7.9	-18.7
Baseline Fine-tuning	-38.2	-25.2
$STM_{\tau=1000}$ (6.26%)	-2.9	-11.4
$STM_{\tau=25}$ (12.34%)	-2.5	-8.8
$STM_{\tau=10}$ (15.1%)	-0.7	-10.4
$STM_{\tau=2.5}$ (23.8%)	0.4	0.0
$STM_{\tau=1.5}$ (26.1%)	-0.3	-0.5
$STM_{9B\tau=2.5}$ (23.8%)	-3.8	-7.3

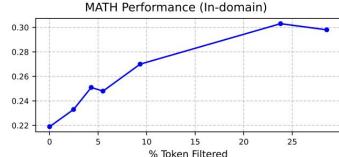


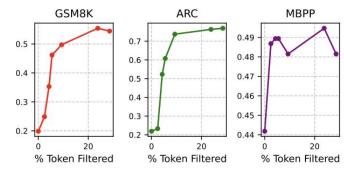


Optimal choice of PPL threshold and PPL calculation

- filter out about 20~24% of high ppl tokens,
 stm gains it in-domain and out-of-domain task
 performance optimally.
- calculation of ppl by the same model is better than a larger one.

Configuration	BWT(%)	TI (%)
$STM_{ au=2.5,high}$	0.4	0.0
$\mathrm{STM}_{ au=2.5,random}$	-8.6	-15.6
$ ext{STM}_{ au=2.5,low}$	-7.9	-18.7
Baseline Fine-tuning	-38.2	-25.2
$STM_{\tau=1000}$ (6.26%)	-2.9	-11.4
$STM_{\tau=25}$ (12.34%)	-2.5	-8.8
$STM_{\tau=10}$ (15.1%)	-0.7	-10.4
$STM_{\tau=2.5}$ (23.8%)	0.4	0.0
$STM_{\tau=1.5}$ (26.1%)	-0.3	-0.5
$STM_{9B\tau=2.5}$ (23.8%)	-3.8	-7.3





Stable performance across learning rate

Lower sensitivity to learning rate of STM than that of baseline fine-tuning.

Llama 3 8B-IT	lr	BWT(%)	TI (%)
BASELINE	1E-4	-	-10.6
BASELINE	2E-5	-34.7	-2.23
BASELINE	5E-6	-	0.9 TI
BASELINE	1E-6	-	-4.47 varies _
BASELINE	5E-7	-	-1.3 Valles -
BASELINE	1E-7	-1.6	1.33
STM	1E-4	1.8	-3.58
STM	2E-5	0.2	3.2 stable
STM	5E-6	-0.1	2.68
STM	1E-6	0.53	$\frac{3.12}{2.12}$ positive
STM	5E-7	1.23	3.12 TI/BWT
STM	1E-7	1.39	2.23

Gemma 2 IT 2B	lr	BWT(%)	TI(%)
BASELINE	2E-5	-38.2	-15.5
BASELINE	5E-6	-	-4.0
BASELINE	1E-6	-	-17.6
BASELINE	1E-7	-4.7	-0.53
STM	2E-5	-0.3	-0.5
STM	5E-6	-1.1	-3.0
STM	1E-6	-0.35	-1.5
STM	1E-7	0.51	0.7

Generalization of STM across training strategies

- STM enhance all the training techniques (full weight and parameter efficient training):
 - Full weight fine-tuning
 - Lora fine-tuning
 - Dora fine-tuning

Configuration	BWT (%)	TI (%)
FWFT FWFT + STM $_{ au=2.5}$	-31.87 -0.13	-27.98 -8.81
LoRA LoRA + STM $_{\tau=2.5}$	-21.76 0.42	-38.19 0.0
$\begin{array}{c} \text{DoRA} \\ \text{DoRA} + \text{STM}_{\tau=2.5} \end{array}$	-8.54 -0.01	-15.2 -0.04

Training with mask == low diversity generation?

- self-bleu scores on 100 MATH testing set.
 - generate 5 samples for each testing instance.
- Both baseline fine-tuning and SFT with STM have similar diversity of generation.
 - SFT decreases diversity, but diversity doesn't deteriorate with STM...
- STM enhances performance at the same time.

Llama 3 8B-IT	lr	self-bleu	TI(%)	BWT (%)
Original Baseline $STM_{\tau=2.5}$	- 1E-7 1E-7	20.47±13 40.29±19 40.77±17	26.3 30.2	-1.6 1.39

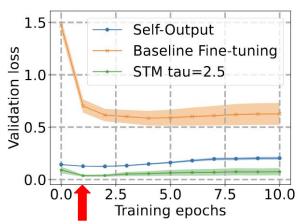
Is STM comparable to regularization?

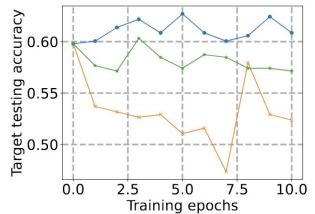
- Training for fewer parameter changes like regularization does not lead to better performance than STM.
 - weight decay (sweeping on decay value and dropout)
 - KL divergence for L2 regularization.

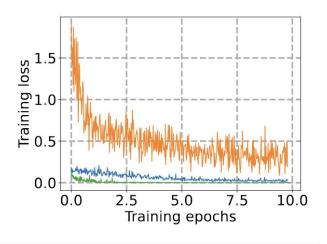
Regularization & Hyperparameter	L2 norm of ΔW	BWT (%)	TI (%)
WEIGHT DECAY 0 + DROPOUT 0.05	0.7539	-9.24	-9.82
WEIGHT DECAY 0.2 + DROPOUT 0.3	0.7109	-3.50	-8.03
Weight decay $0.5 + \text{dropout } 0.3$	0.5351	-11.15	2.86
KL coef = 1E-5	0	-0.24	2.24
STM	0.5500 best	1.90	3.12

Analysis: Fewer parameter changes in STM training

- Faster convergence, fewer parameter (weight) changes
- Fewer parameter changes lead to less forgetting intrinsically.







Models tuned on MBPP	Self-Output	Rephrase	Ground Truth	STM + Ground Truth
Llama 3 8B Instruct	6.53	7.31	17.75	0.55
Gemma 2 IT 2B	4.03	5.78	5.69	0.45

Conclusion

- 1. Selective token masking, STM, bridges the low perplexity of data and one of the reason of LLM catastrophic forgetting after fine-tuning.
- STM provides a simple and cost-effective alternative to synthetic data training
- STM shows the generalization across different model scales, model families, training parameters and training strategies.

Thank You

johnson.wu@appier.com, ray.tam@appier.com, coha.lin@appier.com

