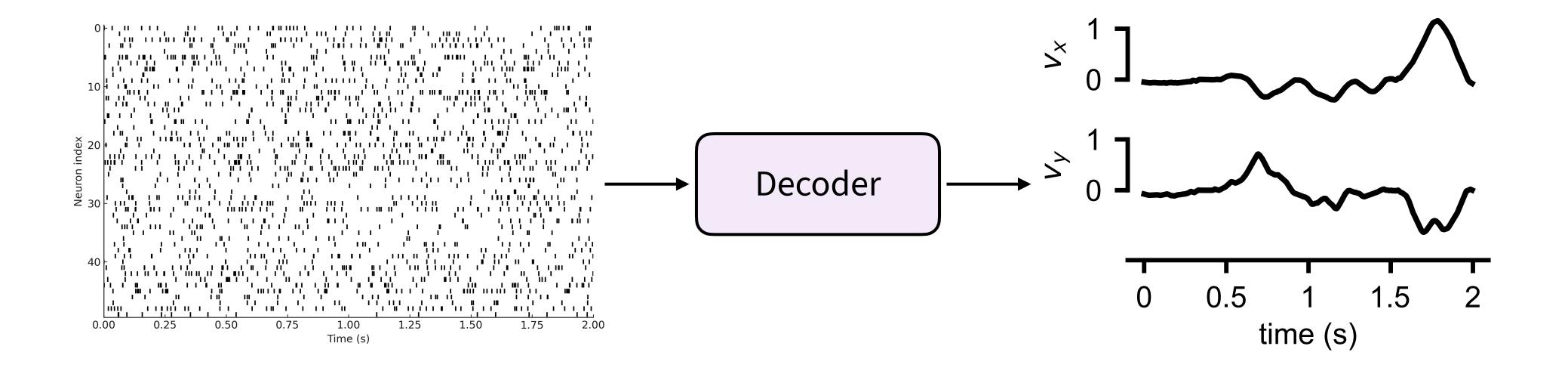


Generalizable, real-time neural decoding with hybrid state-space models

Avery Hee-Woon Ryoo*, Nanda H Krishna*, Ximeng Mao*, Mehdi Azabou, Eva L Dyer, Matthew G Perich[†], Guillaume Lajoie[†]

Introduction

• Neural decoders translate neural activity into behavioural action or control signals



Introduction

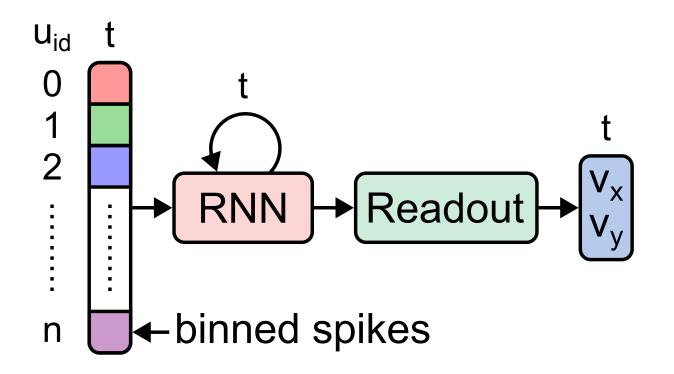
Typical deep learning-based approaches to neural decoding:

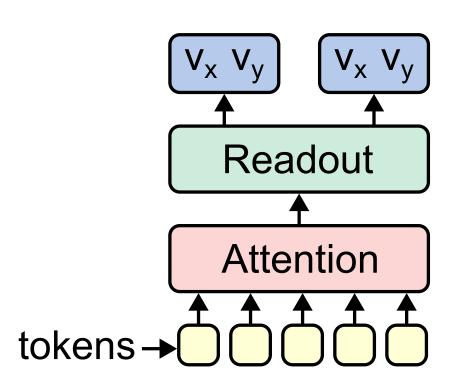
Recurrent neural networks

- Efficient at inference
- Rigid input specification
- Limited generalizability

• Transformer-based approaches

- Slower at inference
- Flexible input specification
- Large-scale pre-training → strong generalization

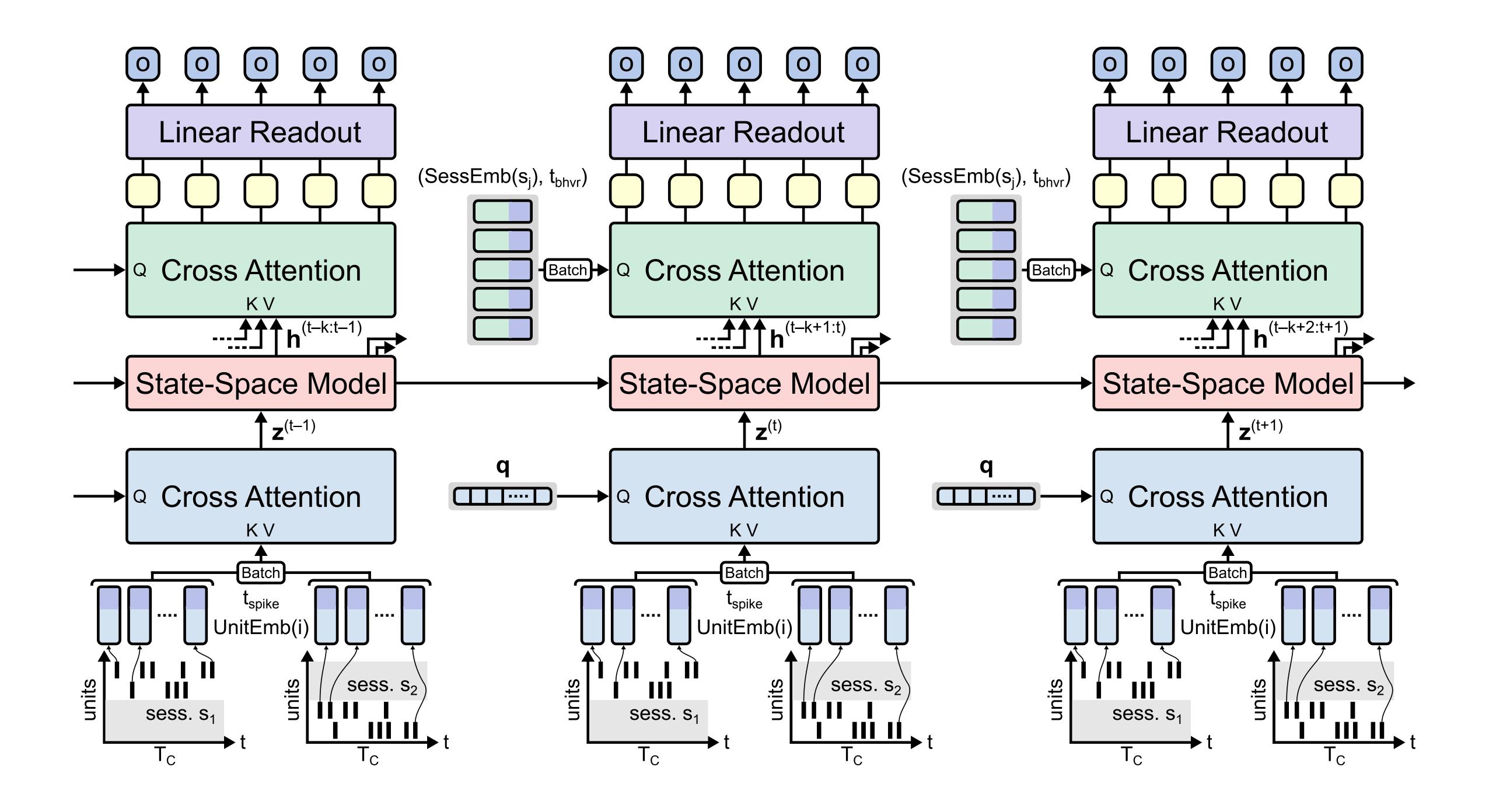




Introduction

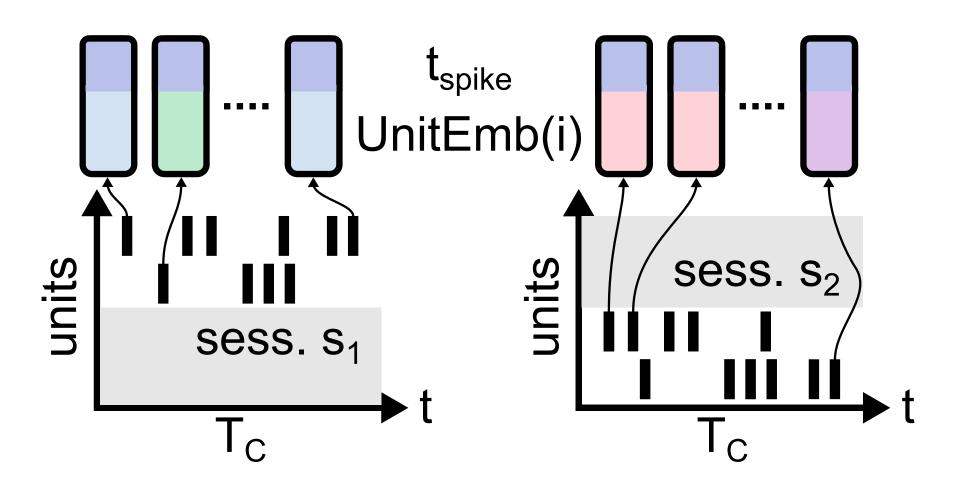
- Online decoding + interfacing are important for therapeutic neurotechnologies
- We want to build neural decoders that are:
 - Highly performant in terms of decoding accuracy
 - Efficient, enabling real-time inference and control
 - Generalizable to new days and individuals with minimal calibration

POSSM



Spike tokenization

- Based on POYO (Azabou et al., 2023):
 - Embed each unit uniquely using learnable unit embeddings
 - Provide spike timing information through rotary positional embeddings (RoPE)

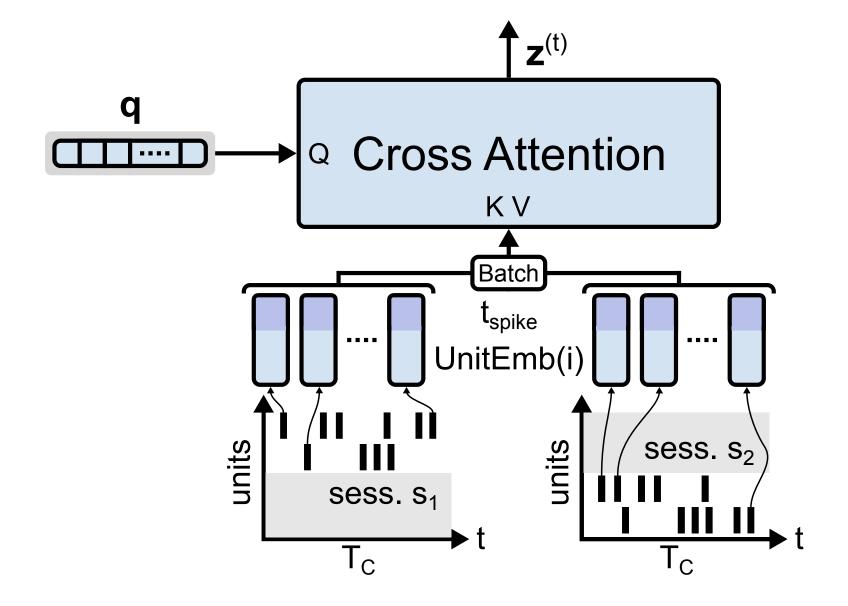


Input cross-attention

 Converts variable-length sequences of spike tokens into a fixed-size latent sequence:

$$\mathbf{z}^{(t)} = \operatorname{softmax}\left(\frac{\mathbf{q}\mathbf{K}_{t}^{\top}}{\sqrt{d_{k}}}\right)\mathbf{V}_{t}$$

- We use one learnable query vector \mathbf{q} in most of our experiments, so $\mathbf{z}^{(t)}$ is a single vector
- Compression which can represent more information than naïve time-binning

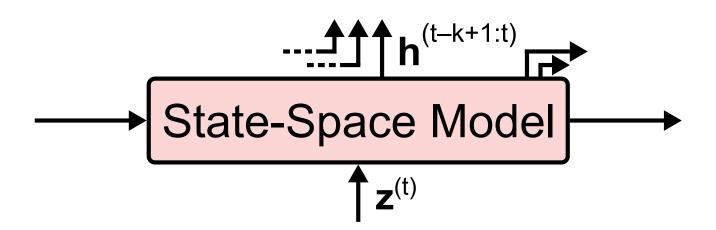


Recurrent backbone

- Maintains a hidden state h^(t) across time chunks
- This is updated based on the output of the crossattention, $\mathbf{z}^{(t)}$, at each time chunk:

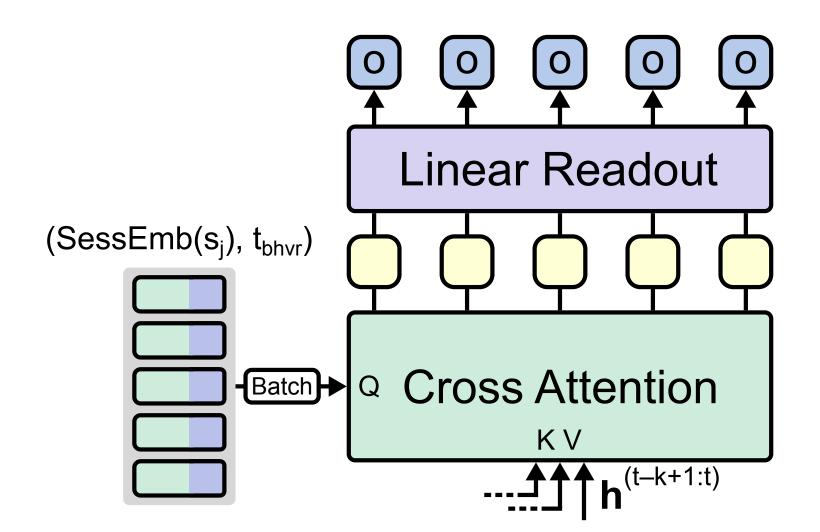
$$\mathbf{h}^{(t)} = f_{\text{SSM}}(\mathbf{z}^{(t)}, \mathbf{h}^{(t-1)})$$

- In our experiments, we use:
 - GRU
 - S4D
 - Mamba



Output cross-attention & readout

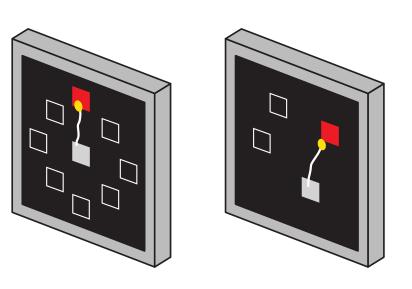
- We decode behaviour using $\{\mathbf{h}^{(t-k+1):(t)}\}$, i.e., the k most recent hidden states as keys and values
- Queries consist of learnable session embeddings (captures latent session-specific factors) and timestamp to predict behaviour at (via RoPE)
- Advantages:
 - Can predict multiple behaviours per chunk
 - No trial-alignment
 - Can predict beyond the current chunk



Multi-session pretraining & finetuning

- We pretrain o-POSSM on several datasets from different labs
- Two finetuning schemes:
 - Unit identification (UI)
 - Freeze all parameters, relearn unit + session embeddings
 - Parameter- and compute-efficient, matches single-session performance
 - Full finetuning (FT)
 - UI for first *k* epochs, unfreeze, finetune all parameters
 - Maximizes performance on target sessions

NHP reaching tasks



- POSSM is either competitive with or outperforms all baselines
- Pretrained o-POSSM outperforms single-session POSSM

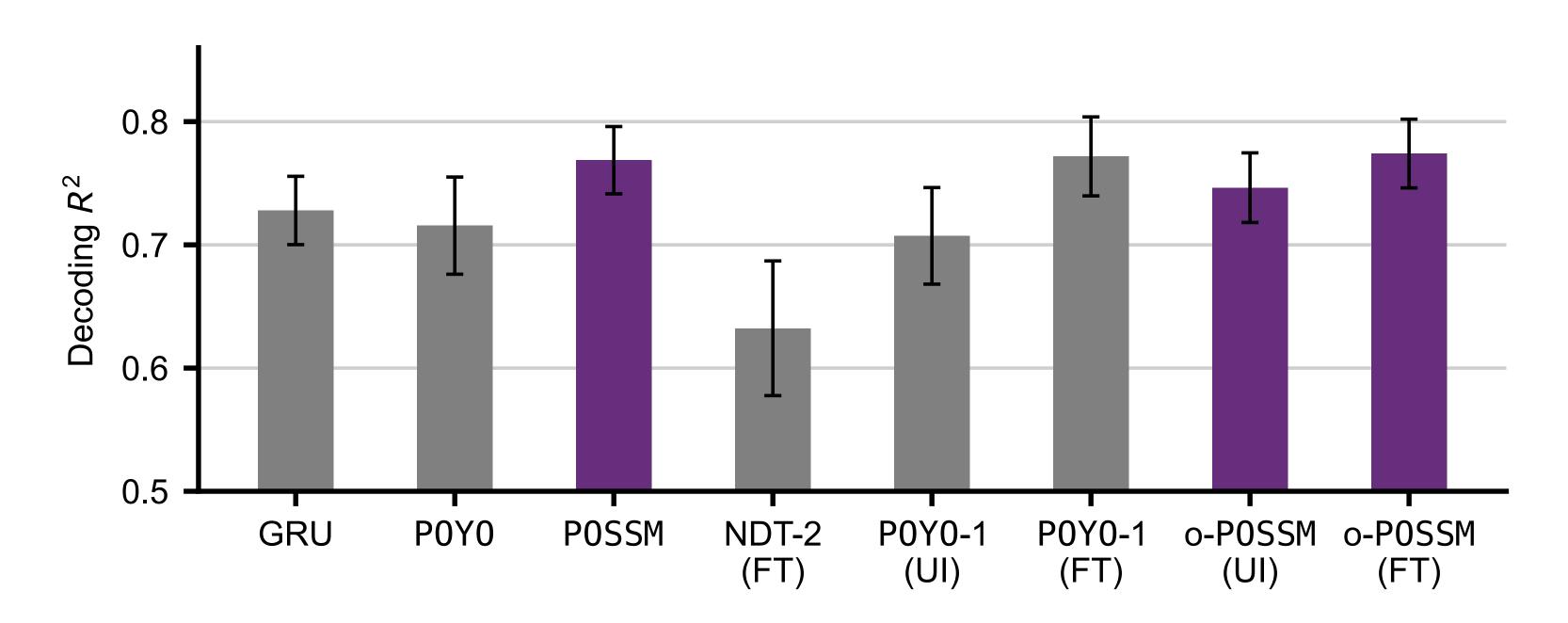
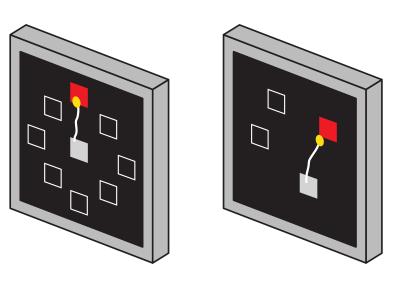


Figure: Decoding performance on held-out subject, RT task. We report the mean R² ± SD over 6 sessions.

Computational efficiency



Training data + compute efficiency

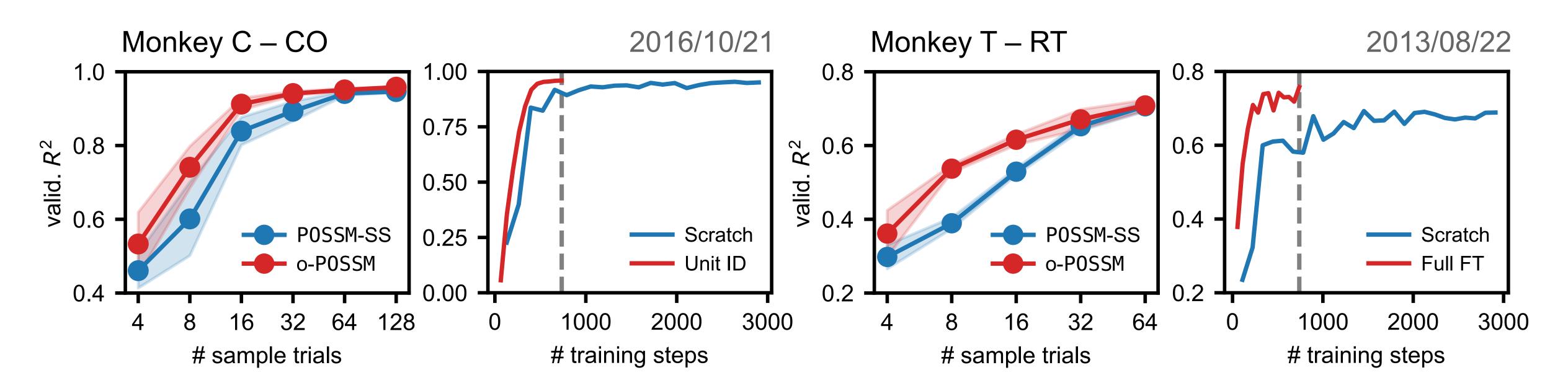
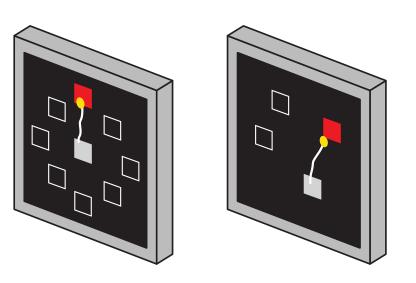


Figure: Demonstrating POSSM's data- and compute-efficiency during finetuning.

Computational efficiency



Low latency at inference, comparable to GRU & MLP

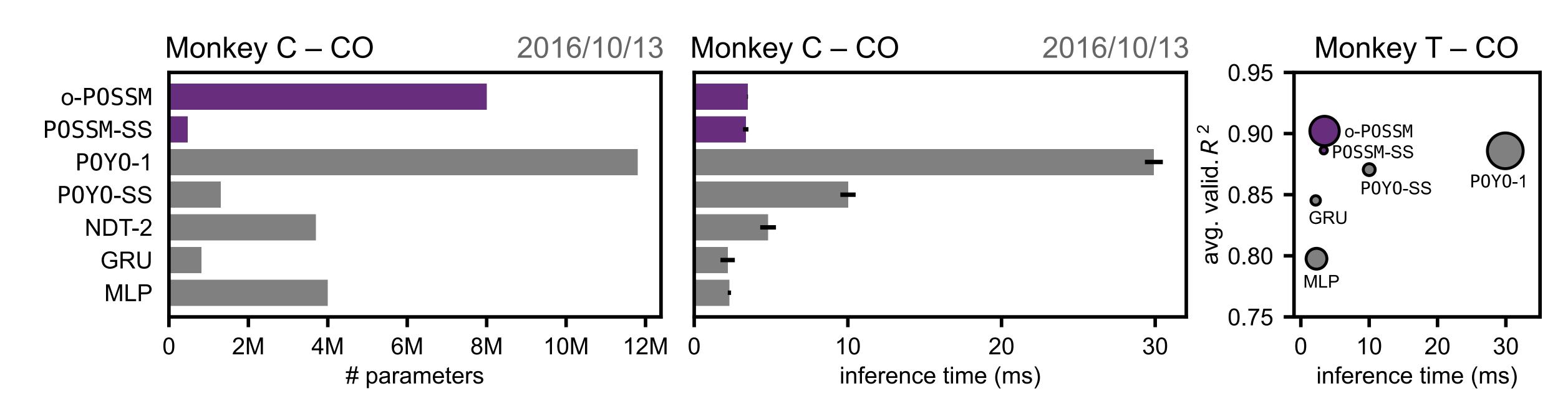


Figure: Demonstrating POSSM's efficiency at inference.

Human handwriting task

hel

- Imagined handwriting character classification task
- Finetuning NHP-pretrained o-POSSM improves overall performance

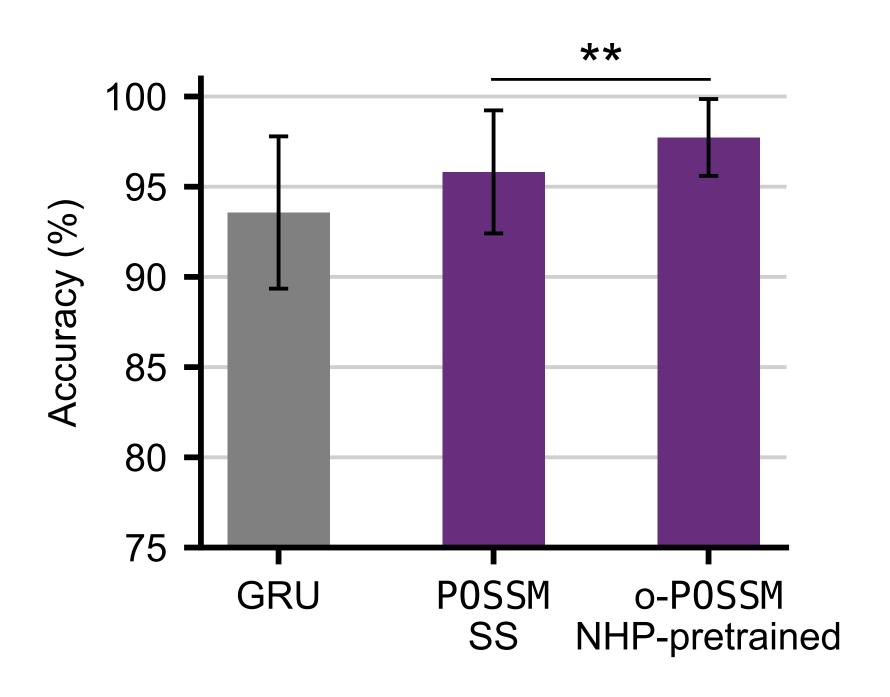
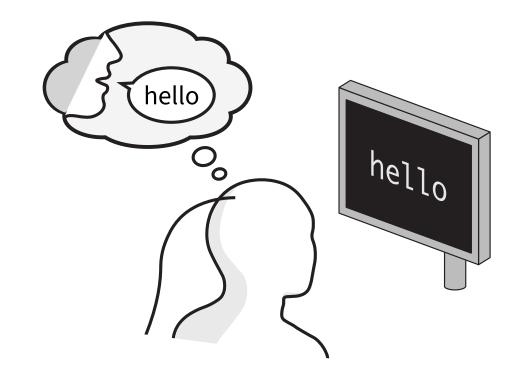


Figure: Decoding accuracy on human handwriting task. We report the mean R² ± SD over sessions.

Human speech task

- Long trials (2–16 seconds) with only sentence-level labels
- POSSM outperforms a strong GRU baseline
- Performance improves when using spiking-band powers

Model	Validation PER (%)
GRU (spikes only)	30.06
POSSM (spikes only)	27.32
GRU (spikes + powers)	21.74
POSSM (spikes + powers)	19.80



Conclusion

- POSSM is highly performant on several neural decoding tasks
- We show the benefits of pretraining in enabling efficient generalization
- Even with increased model sizes, inference times are low
- Results indicate positive cross-species transfer (NHPs to humans)
- POSSM also excels at tasks involving long trials, such as speech decoding
- Future directions:
 - Incorporating self-supervised learning objectives
 - Processing multiple neural recording modalities

