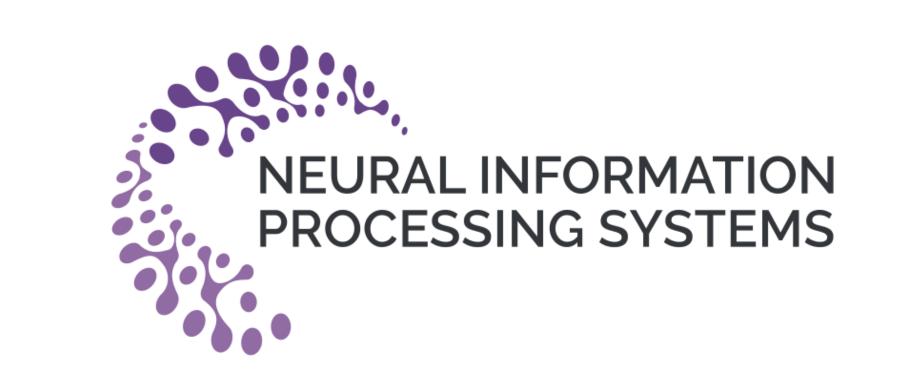


StreamFlow: Streaming Audio Generation from Neural Codec Tokens via Streaming Flow Matching



Ha-Yeong Choi and Sang-Hoon Lee

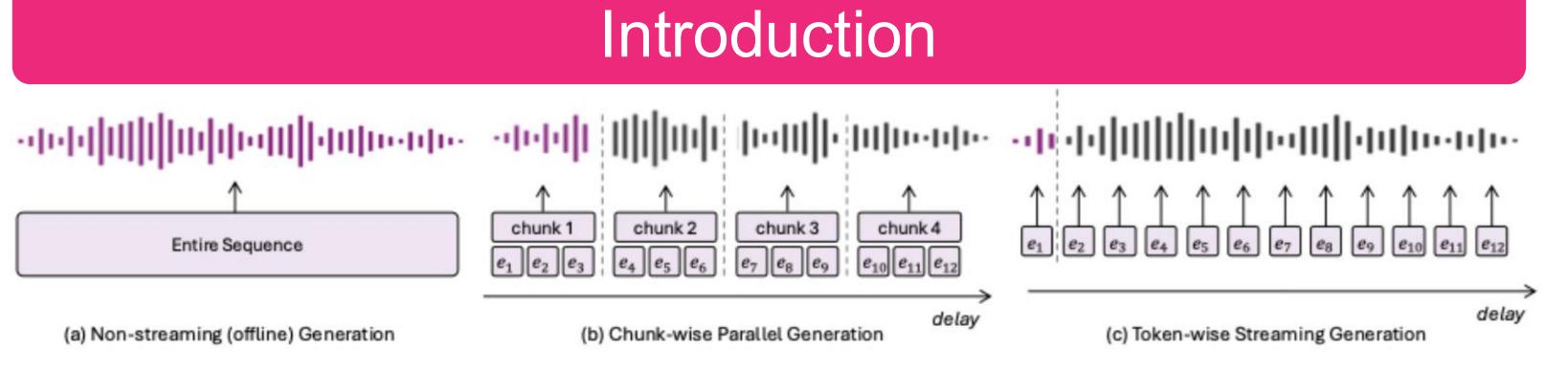


Fig 1. Comparison of generation strategies

Motivations

1. Enabling fully Real-Time Duplex Communication

Recent speech language models (e.g., GPT-4o) require audio generators capable of true fully-duplex, low-latency streaming, motivating a generative framework that can operate at frame-level timescales.

Extending the potential of Conditional Flow Matching

CFM-based decoders exhibit strong high-fidelity generation capabilities, yet existing designs are limited to non-streaming, full-sequence inference. There is a clear need to adapt these advantages to real-time scenarios.

3. Accelerating Streaming Application

Real-time TTS, streaming voice conversion, interactive agents, and speech language models.

Challenges

1. Real-time latency limits of existing CFM

Multi-step iterative sampling and chunk-wise generation prevent true frame-synchronous streaming, making conventional CFM unsuitable for low-latency real-time applications.

2. Quality degradation when reconstructing high-resolution waveforms from low-bitrate tokens

Neural codecs compress speech into discrete low-bitrate tokens, but lack intermediate temporal refinement.

Contributions

1. Streaming Flow Matching (SFM) for token-wise real-time generation

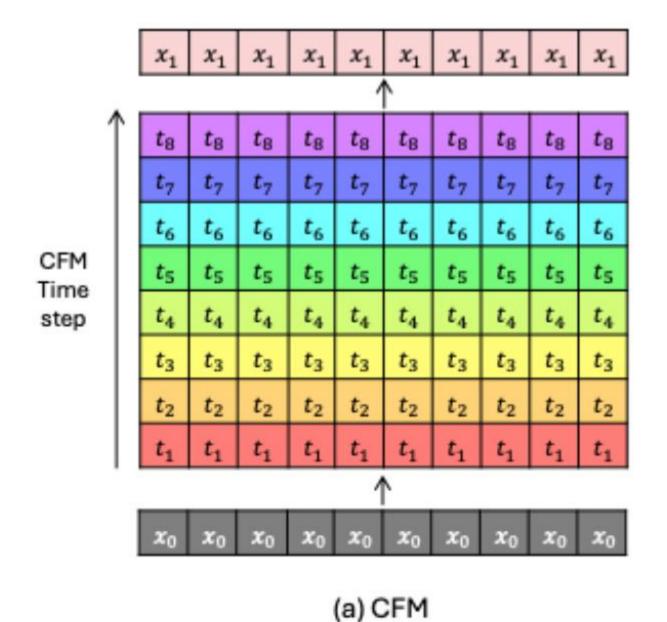
- Proposing a novel streaming generative model that leverages self-conditioned context to estimate multi-time vector fields, enabling token-wise streaming generation.

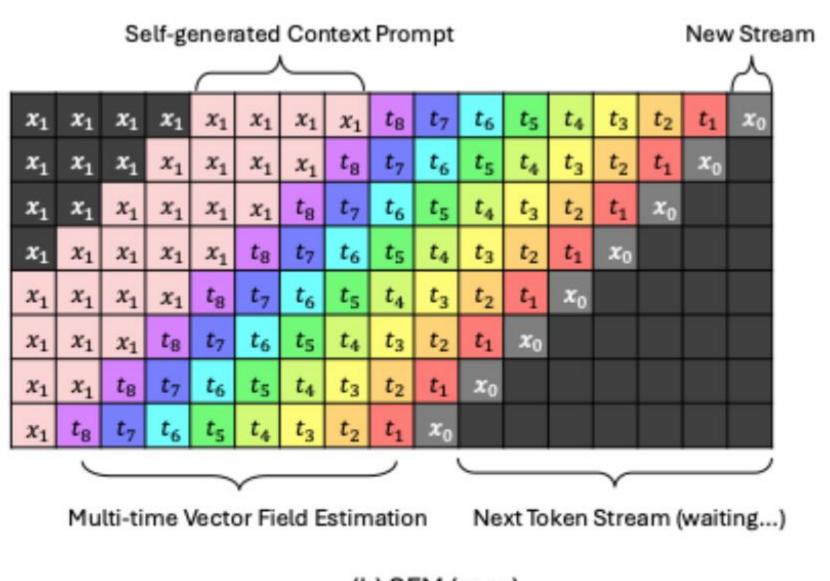
2. Scale-DiT Architecture

- Regularizes representation by modeling and scaling residual–feature differences.
- Improves stability and generalization without increasing parameter size, enhancing DiT-based audio generation.

3. Streaming-optimized waveform generation

- Replaces STFT/iSTFT with a linear-reshape transformation suited for real-time systems.
- Two-stage training (SFM pre-training + adversarial fine-tuning) achieves high-fidelity 24 kHz waveform reconstruction.





(b) SFM (ours)

Fig 2. Comparison of (a) CFM and (b) proposed SFM

Methods

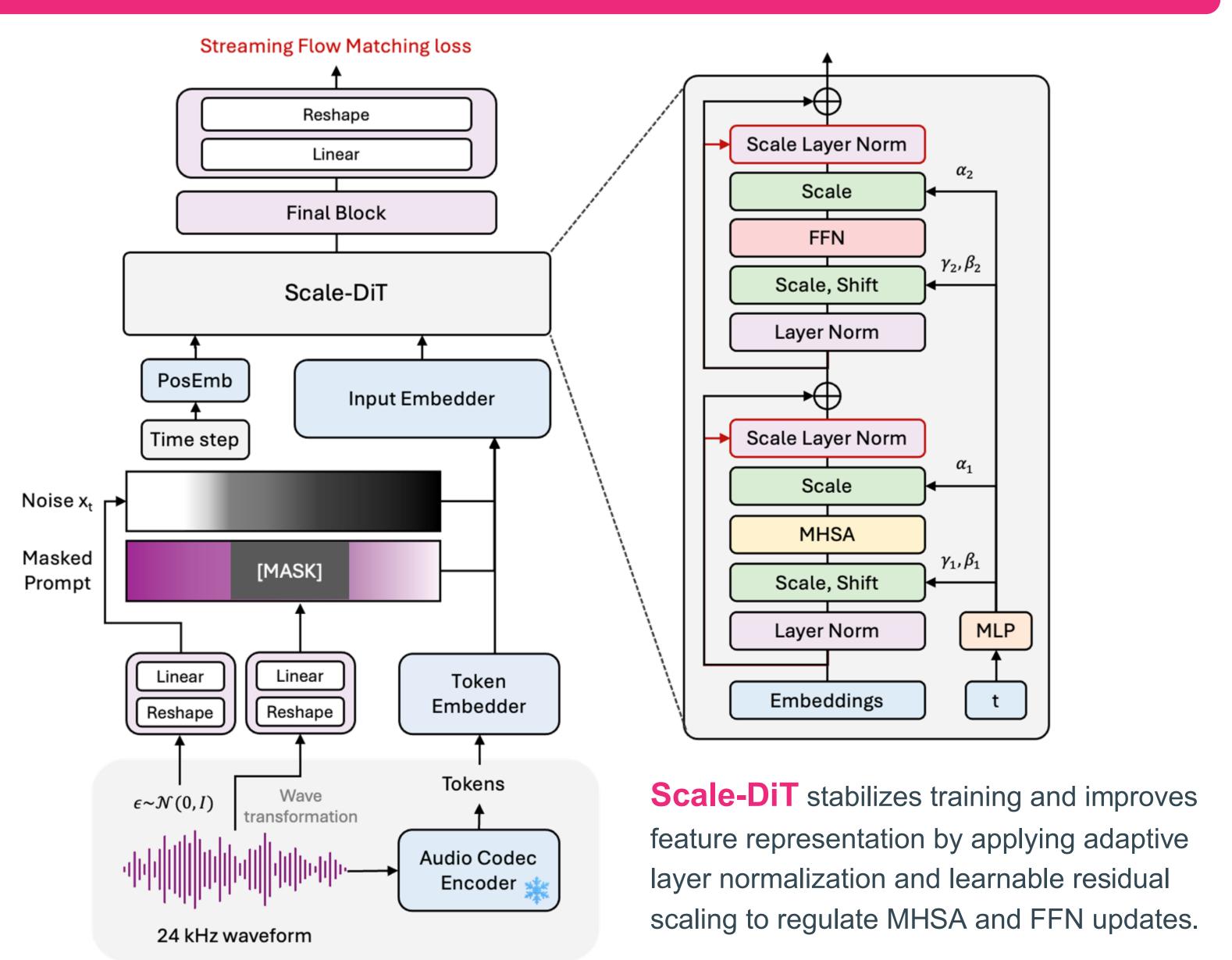


Fig 3. Overall architecture of StremFlow

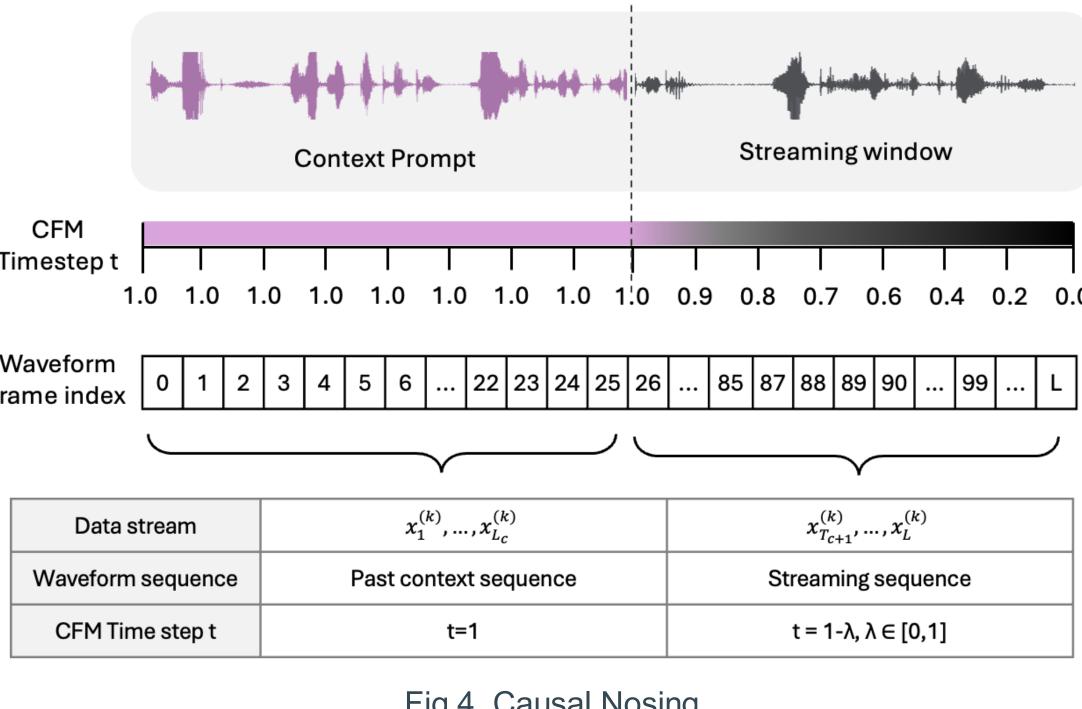


Fig 4. Causal Nosing

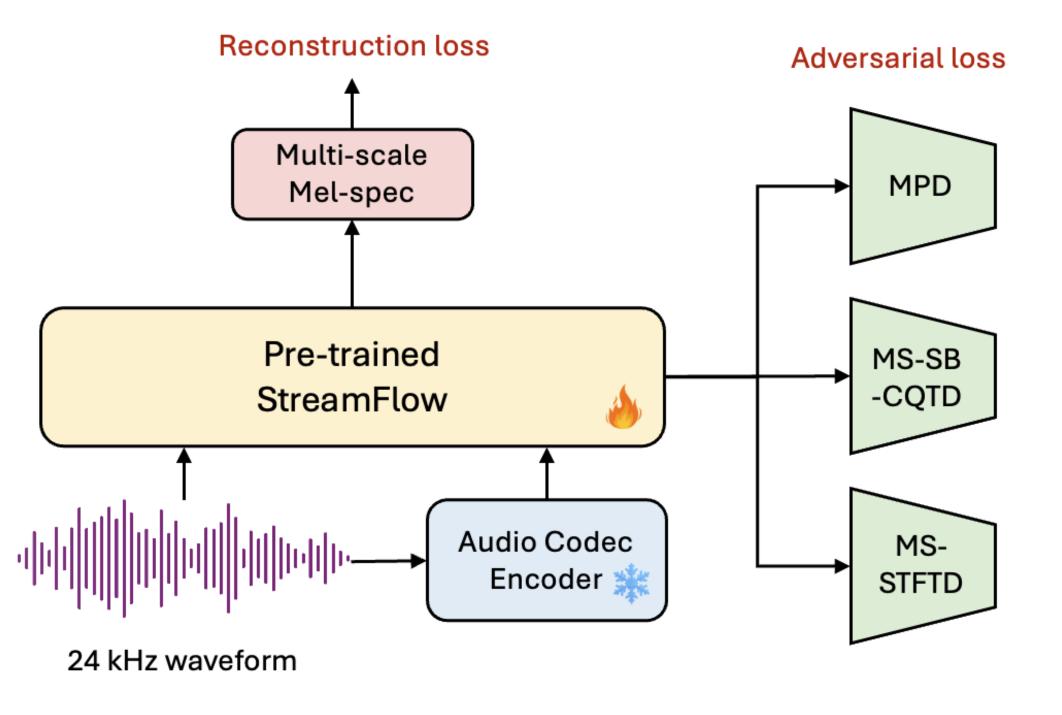


Fig 5. Fine-tuning with Adversarial Training

Streaming Flow Matching

Training: Apply causal noising by fixing past context and masking the streaming window to learn strictly causal representations.

Inference: Prepend newly generated frames and advance the window to enable continuous frame-aligned streaming via in-context learning.

Waveform Transformation

We replace STFT/iSTFT with a linearreshape transformation that removes large receptive fields and future-frame dependency, enabling efficient causal streaming. The reshaped waveform is projected into and back from the Scale-DiT feature space without extra computation during sampling.

Adversarial Training

For high-fidelity audio, the pre-trained StreamFlow is further refined using adversarial discriminators (MPD, MS-STFTD, MS-SB-CQTD) combined with multi-scale STFT losses.

Experiments

Encodec Token Reconstruction Results

Model	Streaming	Params.	M-STFT↓	PESQ ↑	Period ↓	V/UV ↑	UTMOS ↑	MOS ↑
GT	-	_	-	-	-	-	3.423	$4.07{\pm}0.02$
Vocos [46] MBD [13]	×	7M 411M	1.074 1.612	3.051 2.645	0.086 0.108	0.957 0.946	3.100 3.300	$3.98\pm0.02 \\ 3.95\pm0.03$
RFWave [32] StreamFlow	×	18M 170M	1.280 0.997	3.020 3.473	0.078 0.080	0.9570.957	2.9883.450	3.99 ± 0.02 4.03 ± 0.02
Encodec [9] StreamFlow-Tiny StreamFlow-Small StreamFlow-Base	✓ ✓ ✓	15M 11M 44M 175M	1.170 1.111 1.072 1.061	2.643 3.027 3.207 3.335	0.112 0.107 0.096 0.102	0.941 0.947 0.950 0.948	2.542 3.060 3.206 3.325	3.74 ± 0.03 3.99 ± 0.02 3.99 ± 0.03 4.03 ± 0.02

Mimi Token Reconstruction Results

Model	$\mid N_q$	Bitrate	F (Hz)	CER↓	WER↓	M-STFT↓	PESQ ↑	Period. ↓	V/UV ↑	Pitch ↓	UTMOS↑
GT	_	_	-	1.12	3.06	-	-	-	-	-	3.862
Mimi StreamFlow	4 4	550 550	50 50	7.42 5.22	12.72 9.45	1.552 1.410	1.657 1.584	0.210 0.212	0.880 0.876	77.575 73.891	3.019 3.093
Mimi StreamFlow	6 6	825 825	75 75	5.10 3.78	9.00 6.87	1.426 1.272	2.012 2.043	0.180 0.177	0.901 0.906	60.142 55.830	3.347 3.719
Mimi StreamFlow	8 8	1100 1100	100 100	3.05 3.26	6.93 6.16	1.352 1.217	2.2662.306	0.165 0.162	0.910 0.915	50.686 45.640	3.506 3.910

Scalability with respect to model size

Model	Params.	Input Dim.	Hidden	Head	M-STFT↓	PESQ ↑	Period ↓	V/UV↑	Pitch ↓	UTMOS ↑
StreamFlow-Tiny	11M	256	1024	4	1.126	3.183	0.097	0.951	27.846	3.550
StreamFlow-Small	44M	512	2048	8	1.099	3.307	0.089	0.955	27.740	3.690
StreamFlow-Base	175M	1024	4096	16	1.088	3.430	0.088	0.955	26.843	3.792

Ablation Study

Model	M-STFT↓	PESQ ↑	Period ↓	V/UV ↑	Pitch ↓	UTMOS ↑		
Streaming (online)								
StreamFlow	1.088	3.430	0.088	0.955	26.843	3.792		
w/o In-Context Learning	1.099	3.337	0.088	0.954	26.772	3.748		
w/o Adversarial Fine-tuning	1.388	2.669	0.101	0.950	21.099	3.178		
w/o SFM Pre-training	1.919	1.153	0.353	0.812	574.55	1.308		
w/o Scale-DiT	1.593	2.557	0.099	0.946	27.330	3.033		
w/o RoPE	2.049	1.598	0.176	0.898	68.891	1.904		
Non-streaming (offline)								
StreamFlow	1.017	3.499	0.085	0.955	29.087	3.888		
w/o iSTFT	1.097	3.139	0.082	0.956	22.636	3.619		

Further Analysis of Scale-DiT

Model	Training Steps	WER↓	STOI ↑	PESQ ↑	SPK-SIM ↑	UTMOS ↑
DiT	150k	11.76	0.85	1.71	0.58	2.72
DiT + REPA	150k	8.76	0.86	1.74	0.59	2.85
Scale-DiT	150k	9.68	0.86	1.78	0.59	2.83
Scale-DiT + REPA	150k	8.34	0.87	1.78	0.60	2.92
DiT	300k	9.41	0.87	1.84	0.62	3.04
DiT + REPA	300k	8.17	0.87	1.84	0.64	3.10
Scale-DiT	300k	7.56	0.87	1.90	0.64	3.16
Scale-DiT + REPA	300k	7.18	0.88	1.92	0.65	3.26
DiT	700k	9.59	0.87	1.92	0.64	3.20
DiT + REPA	700k	6.88	0.88	1.92	0.67	3.28
Scale-DiT	700k	6.23	0.88	2.07	0.68	3.45
Scale-DiT + REPA	700k	5.99	0.89	2.09	0.68	3.52

Replacing Mimi decoder with StreamFlow

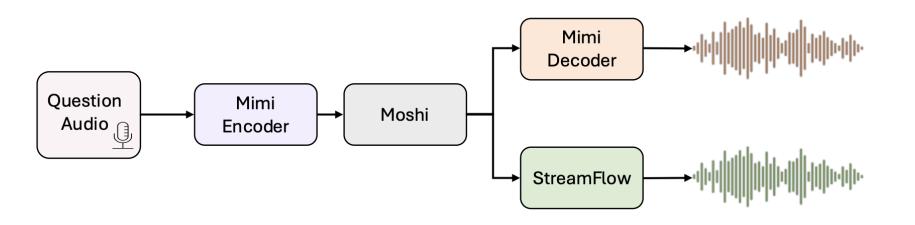


Fig 6. Inference pipeline comparing the Mimi decoder and the proposed StreamFlow

Method	CER↓	WER↓	UTMOS ↑
Moshi w/ Mimi decoder	7.59	9.89	3.610
Moshi w/ StreamFlow (Ours)	7.19	9.82	3.847

