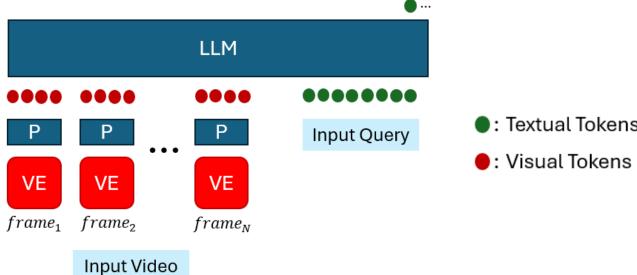
Recurrent Attention-based Token Selection for Efficient Streaming Video-LLMs

Vaggelis Dorovatas, Soroush Seifi, Gunshi Gupta, Rahaf Aljundi

In this work, we tackle the problem of online long video understanding with video-LLMs

Video-LLMs

• Generate a textual response given a video & a textual query:



• Typically trained in short videos (seconds or a few mins).

Online Long Video Understanding

- Long Stream is **continually received** (online)
- Input queries can arrive at any tin
- When the received frames exceed the context limit, we have "in-context disconnection"

Previous Streaming Video Understanding Works

Independent Clip Processing

- Split the long stream into independent segments
- Generate captions for each and use them for answering queries
 - **⇔** Lacks continuity

Visual Memory

- Compression module to compress visual tokens
- Usually requires training Coupled with the base video-LLM
- Doesn't exploit the LLM's reasoning abilities for compression

Storing the full KV cache

- High memory requirements
- Slow retrieval
 - Considers all previous KVs
- High redundancy may confuse retrieval

Our Approach: *rLiVS*

- **Training-free** (model-agnostic)
- Efficient Token Selection based on Model's attention (we don't store everything)
- Continuous video stream → **group frames into segments**
- Recurrency for continuity over segments
 - → Full context = History Tokens + Current segment's visual tokens
- Generate captions for each segment (LLM thoughts) and save them in the long-term memory M.

Online Video Processing in detail

Given current short clip X_V^i and history tokens S^i , we have:

Token Selection & Memory Update

$$\hat{X}_{V}^{i} = attn_selection(X_{V}^{i}, C^{i})$$
$$S^{i+1} = update(S^{i}, \hat{X}_{V}^{i})$$

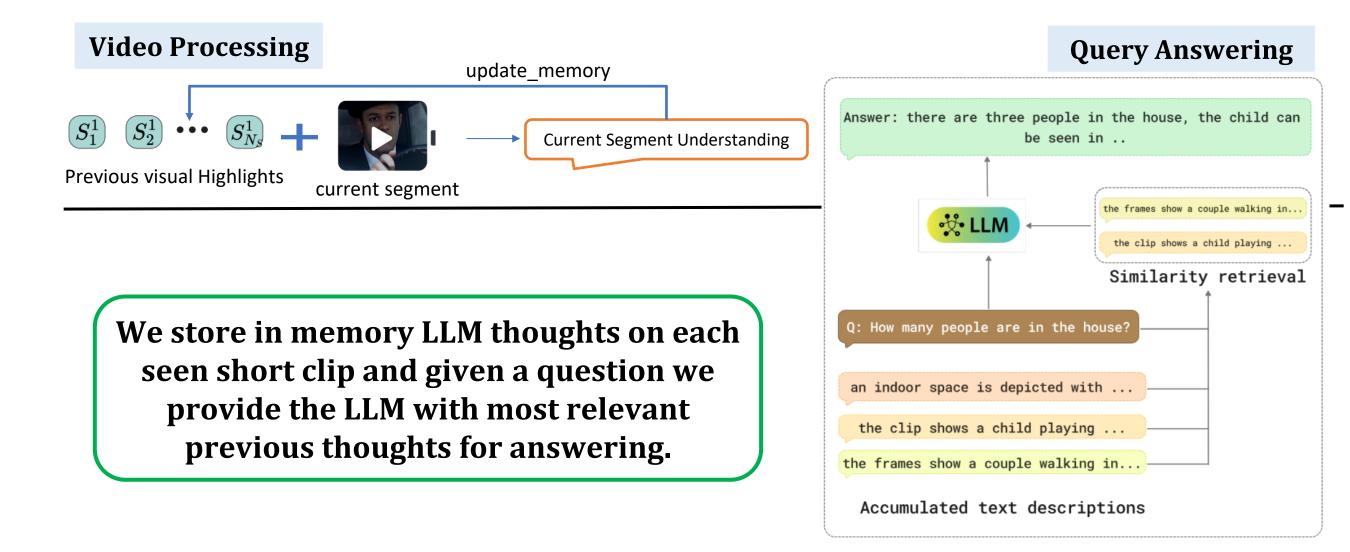
Storing LLM thought: $M.append(C^1)$ *We note that $S^0 = []$ and M are initially empty.

Current visual clip tokens $X_{\scriptscriptstyle V}^2$

Incoming frames are grouped into short clips

Full model context is split into *Memory + Current visual tokens*

rLiVS at inference



Streaming VQA

Method	RVS	-Ego	RVS-Movie		Latency	VRAM	KV-Cache	
	Acc.	Sco.	Acc.	Sco.				
MovieChat [28]	50.7	3.4	36.0	2.3	-	_	_	
LLaMA-VID [21]	53.4	3.9	48.6	3.3	-	-	-	
Flash-VStream-7B [38]	57.3	4.0	53.1	3.3	2.1s	19 G B	-	
VideoScan [20]	60.9	4.0	54.1	3.5	2.1s	18 G B	-	
$\bar{L}\bar{L}a\bar{V}\bar{A}$ - $\bar{O}\bar{V}$ \bar{O} . $\bar{S}\bar{B}$								
$\hookrightarrow \text{ReKV} [9]$	54.7	3.7	44.6	3.4	1.6s	19 G B	4.0 GB/h	
\hookrightarrow rLiVS (Ours)	57.6	3.8	51.3	3.4	1.5s	11 G B	-	
$\bar{L}\bar{L}a\bar{V}\bar{A}$ - $\bar{O}\bar{V}$ $\bar{7}B$								
$\hookrightarrow \text{ReKV} [9]$	63.7	4.0	54.4	3.6	2.7s	36GB	18.8 GB/h	
\hookrightarrow rLiVS (Ours)	65.3	4.0	<i>57.7</i>	3.6	1.9s	25GB	-	
\overline{Q} wen $\overline{2}.\overline{5}$ - $\overline{V}L$ 7 \overline{B}	- .							
$\stackrel{\sim}{\hookrightarrow}$ rLiVS (Ours)	68.1	4.0	<u>56.1</u>	3.6	2.7s	19 G B	-	

Offline Long VQA

Method	VS-Ego		VS-Movie		MovieChat		CG-Bench	
	Acc.	Sco.	Acc.	Sco.	Acc.	Sco.	Acc.	
Video-ChatGPT [22]	51.7	3.7	54.4	3.4	47.6	2.5	_	
MovieChat [28]	52.2	3.4	39.1	2.3	62.3	3.2	-	
Chat-UniVi [14]	50.9	3.8	54.0	3.4	_	_	25.9	
LLaMA-VID [21]	54.8	3.9	51.4	3.4	53.2	3.8		
Goldfish [1]	_	-	_	_	67.6	4.2	-	
Flash-VStream-7B [38]	59.0	3.9	56.1	3.4	_	_	-	
rLiVS (Ours)	61.0	3.9	59.3	3.6	78.0	4.0	33.1	

Ablations

(a) Importance of recurrency

Method	RVS-Ego		RVS-	Movie	MovieChat	
	Acc.	Sco.	Acc.	Sco.	Acc.	Sco.
rLiVS	65.3	4.0	57.7	3.6	78.0	4.0
w/o recurrency	62.5	3.9	53.7	3.5	74.1	3.9

(b) Answering Modality

Retrieved Modality	RVS-Ego		RVS-Movie		
	Acc.	Sco.	Acc.	Sco.	
Selected Visual Tokens	58.2	3.9	48.4	3.5	
Captions (ours)	65.1	4.0	<i>57.7</i>	3.6	
Combination	63.0	4.0	54.3	3.5	

Task Adaptability

Case Study: Instruction Sensitivity We selected two representative videos and evaluated the overlap of selected visual tokens using a generic captioning prompt versus task-specific instructions:

- Video 1: A girl with sunglasses is the main foreground object.
 - Instruction: "Track the locations of the girl wearing the sunglasses in the video."
 - Token Overlap with Generic Prompt: 44%
- Video 2: Two people playing cards, with interest focused on the background.
 - Instruction: "Locate and describe the objects appearing in the background of the video."
 - Token Overlap with Generic Prompt: 8% **Generic Prompt: "Describe what's happening in the video."

Summary

rLiVS focuses on

- Continuity through recurrency
- Token selection through Model's attention
- **Caption-based Answering**

and results in...

SOTA on very long streaming VQA while being faster and more light-weight.

Limitations & Future Work

- FIFO memory may suffer from information drift
- Complement *rLiVS* with long-term memory that stores tokens evicted from the FIFO recent memory