Northwestern University

MAESTRO: Adaptive Sparse Attention and Robust Learning for Multimodal Dynamic Time Series

Payal Mohapatra Yueyuan Sui Akash Pandey Stephen Xia Qi Zhu

Northwestern University, USA

Motivation

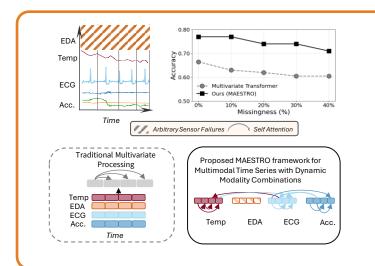
- Traditional approaches treat multisensor data as *multivariate* time-series, ignoring heterogeneous modalities and their interactions.
- Existing sensor-fusion approaches are often application-specific and heuristic.

We present a novel perspective on modeling time-series data from multiple diverse sensing modalities as multimodal learning, enabling the discovery of task-relevant, modality-specific and cross-modal interactions.

Common multimodal paradigms cannot be directly applied to real-world sensing applications:

- Reliance on a single anchor modality is not feasible when the primary modality is not known a priori.
- Contrastive learning assumes high mutual information among modalities, which is not always guaranteed in heterogeneous sensing modalities.
- Pairwise interaction modeling grows combinatorially as the number of modalities increases (M > 4).

Another important consideration in designing multimodal learning frameworks for time-series from real-world sensing applications is supporting learning from arbitrary combinations of sensing modalities. as sensor malfunction is common.



We introduce MAESTRO, a robust framework that overcomes key limitations of existing multimodal and multivariate learning approaches while handling samples with arbitrary sensor combinations. It constructs long multimodal sequences to facilitate dynamic intra- and cross-modal interactions based on task relevance. We use sparse attention, symbolic tokenization, adaptive attention budgeting, and Mixture-of-Experts to efficiently realize MAESTRO.

Handling Long Multimodal Sequences

Although self-attention's computational complexity increases quadratically with sequence length, it exhibits a long-tailed distribution. We can sample only the most informative queries from the long cross-modal sequence to improve computational efficiency.

Sparse Attention: For each query $\mathbf{q} \in \mathbf{Q}$, we first sample a random Complexity comparison. \hat{L} : subset of keys $\mathbf{K}' \subset \mathbf{K}$ where $|\mathbf{K}'| = u \log L_K$. We compute a sparsity multimodal length, M: modalities. metric $\mathcal{P}(\mathbf{q}, \mathbf{K}')$ that evaluates the guery's attention diversity.

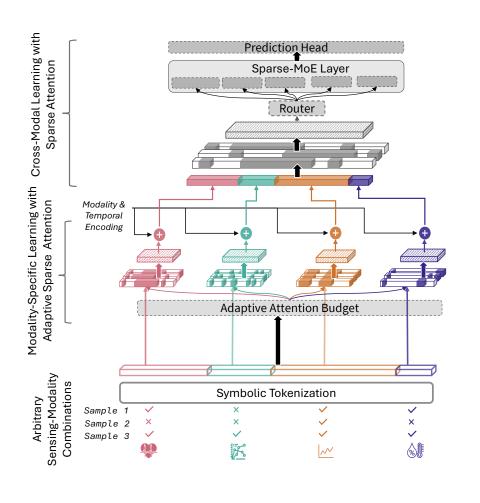
Queries with higher $\mathcal{P}(\mathbf{q}, \mathbf{K}')$ scores contain more distinctive information. We select the top-v queries (where $v = u \log L_Q$) with the highest sparsity scores to favor diverse queries. This selection is performed independently for each attention head to avoid excessive information

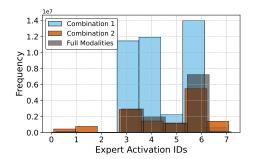
 $L_{\rm max}$: longest sequence.

Method	Time	Space
Dense Pairwise Sparse (Ours)	C(III Dmay)	$\begin{array}{c} \mathcal{O}(\hat{L}^2) \\ \mathcal{O}(M^2 L_{\max}^2) \\ \mathcal{O}(\hat{L} \log \hat{L}) \end{array}$

Overall Model Architecture

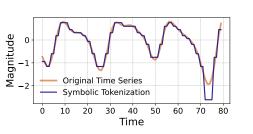
MAESTRO integrates four key components: 1 symbolic tokenization with reserved tokens for missing data, 2 adaptive attention budgeting guided by modality availability and relevance, 3 sparse attention over long multimodal sequences to capture rich cross-modal context, and 4 loss-free, MoE-based dynamic routing that adapts to varying modality observations.





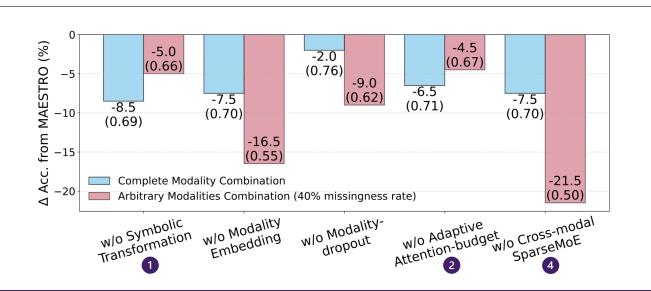
4 Sparse MoE supports input-dependent dynamism based on modality combinations.

2 Adaptive Attention Budget parameterizes v for selecting top-vdominant gueries for each modality.

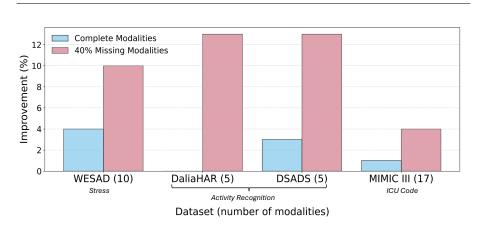


1 Time-series, x[t], is converted to discrete tokens $s[w] \in \{s_0, s_1, \dots, s_{\alpha}\},\$ where s_0 is reserved to denote missingness.

Ablation Study



Key Experimental Results



Overall MAESTRO offers an average improvement of 8% over top multivariate and 4% over top multimodal baselines—across all benchmarks.

Under dynamic conditions with arbitrary number of missing modalities, MAESTRO achieves increasing accuracy improvements over the best baseline-7.6% improvement under 10% missingness and 9.4% under 40%.

Computational Complexity

Model	Acc. ↑	MMAC ↓	GFLOPs ↓	Params (M)
Multivariate Models iTransformer Transformer	$0.67_{\pm 0.05} \\ 0.63_{\pm 0.02}$		5.73 8.66	12.82 1.68
Multimodal Models FuseMoE MULT ShaSpec	$\begin{array}{c} 0.47_{\pm 0.41} \\ 0.60_{\pm 0.42} \\ 0.62_{\pm 0.51} \end{array}$	13324	13.05 26.65 9.11	0.67 3.71 216
MAESTRO - Full-Attn (Per-Modal) - Full-Attn (Cross-Modal) - All Full-Attention - All Full-Attention (no MoE)	$\begin{array}{c} 0.77_{\pm 0.04} \\ 0.80_{\pm 0.03} \\ 0.77_{\pm 0.07} \\ 0.75_{\pm 0.05} \\ 0.78_{\pm 0.04} \end{array}$	3769 3496 4205	6.13 7.54 6.99 8.42 8.78	1.39 1.40 1.39 1.39 1.39

References

- [1] Informer: Beyond efficient transformer for long sequence time-series forecasting. AAAI Conference on Artificial Intelligence, 2021.
- [2] Quantifying & modeling multimodal interactions: An information decomposition framework. Advances in Neural Information Processing Systems,
- [3] Imagebind: One embedding space to bind them all. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.
- [4] Multimodal transformer for unaligned multimodal language sequences. In Proceedings of the Association for Computational Linguistics, 2019.
- [5] Flex-MoE: Modeling arbitrary modality combination via the flexible mixture-of-experts. Advances in Neural Information Processing Systems, 2024.

Sparse Multi-Self-Attention Peed-forward Networks