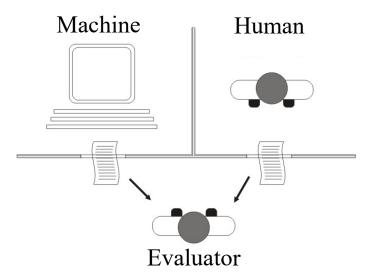


Learning Human-Like RL Agents Through Trajectory Optimization With Action Quantization

Jian-Ting Guo¹, Yu-Cheng Chen¹, Ping-Chun Hsieh¹, Kuo-Hao Ho¹ Po-Wei Huang¹, Ti-Rong Wu², I-Chen Wu^{1,2}

¹ National Yang Ming Chiao Tung University ² Academia Sinica



Turing test

- The *Turing Test* is one of the most well-known benchmarks to evaluate whether an agent can perform intelligent behavior that is indistinguishable from a human
 - To pass the Turing Test, agents are designed not only to achieve the goal of the given task but also to behave in a human-like manner
- However, most of these benchmarks are in text, not in RL

Human-Like Reinforcement Learning

- Most RL research focuses on designing rewarddriven agents
 - The behavior is unnatural, not human-like

Reward-driven RL agents

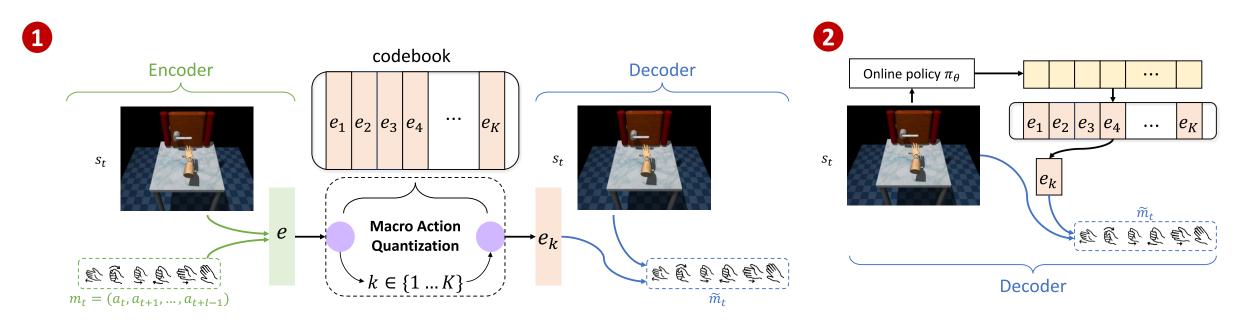
Human-Like Reinforcement Learning

- Most RL research focuses on designing rewarddriven agents
 - The behavior is unnatural, not human-like

- Remains underexplored in the RL community
- Most of the previous methods rely on pre-defined behavior constraints or rule-based penalties

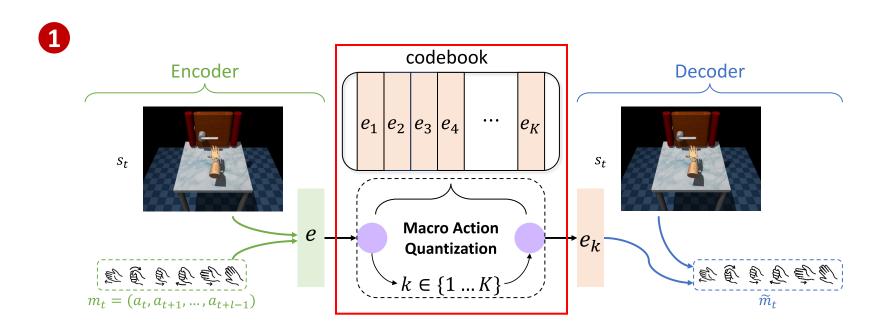
Reward-driven RL agents

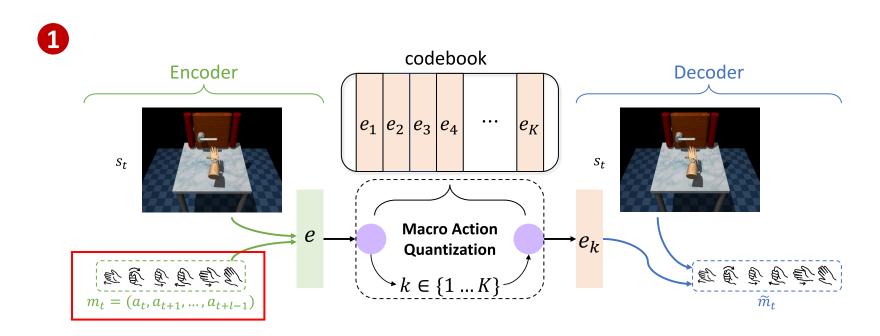
Human-like RL agents (Ours) 3



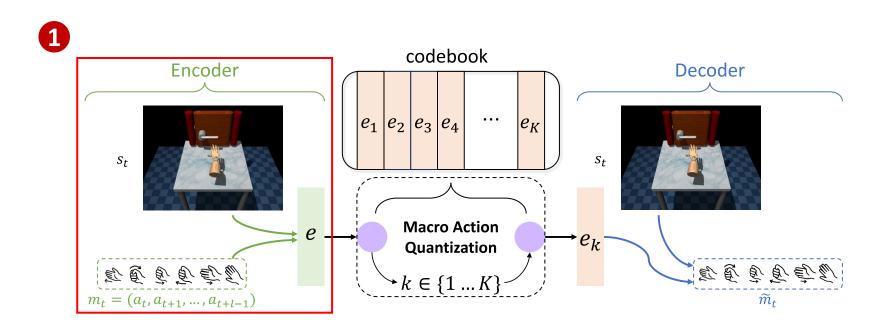
Human-likeness

- We introduce the concept of *human-like sequence*, which is a set of human-generated action sequences
 - Human-likeness can be enforced by constraining the search space of action sequences
 - The longer the action lengths are, the more human-like it is
- To achieve the human-like sequence:
 - Distill human behavior into *macro action* sequences of actions from human demonstrations
 - Then, select macro actions to interact with the environment at each timestep

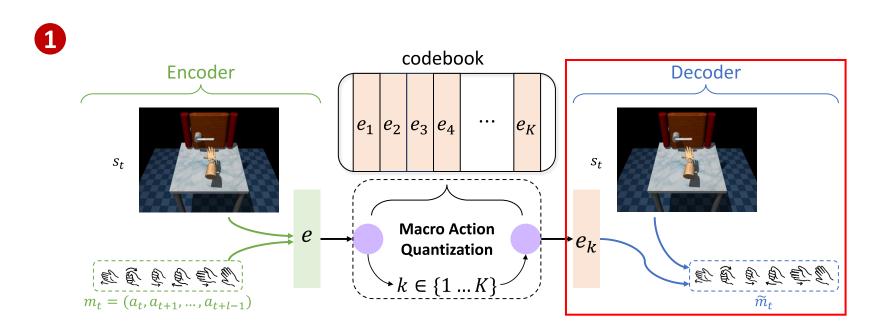

- MAQ consists of two stages
 - • Human behavior distillation
 - 2 Reinforcement learning with macro actions



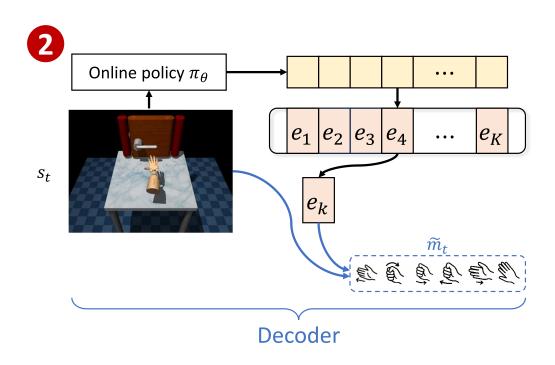
- Human behavior distillation
 - We train a Conditional-VQVAE to distill **macro action** from human demonstration to learn a discrete codebook



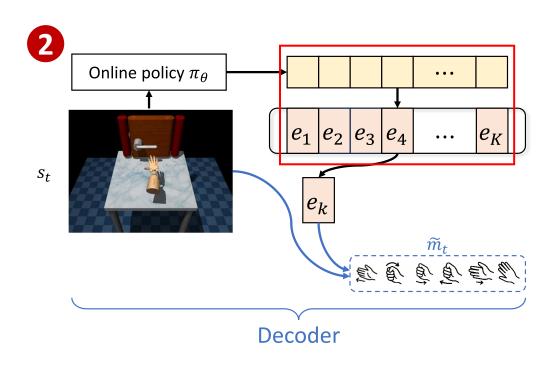
- Human behavior distillation
 - We train a Conditional-VQVAE to distill **macro action** from human demonstration to learn a discrete codebook



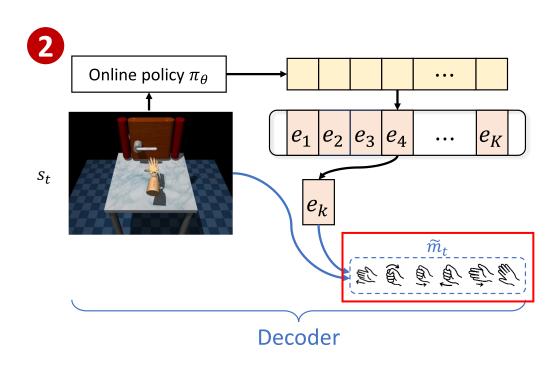
- Human behavior distillation
 - We train a Conditional-VQVAE to distill **macro action** from human demonstration to learn a discrete codebook



- Human behavior distillation
 - We train a Conditional-VQVAE to distill **macro action** from human demonstration to learn a discrete codebook



- Reinforcement learning with Macro Actions
 - We train an online policy (π_{θ}) that acts in the learned discrete code space by selecting codebook indices



- Reinforcement learning with Macro Actions
 - We train an online policy (π_{θ}) that acts in the learned discrete code space by selecting codebook indices

- Reinforcement learning with Macro Actions
 - We train an online policy (π_{θ}) that acts in the learned discrete code space by selecting codebook indices

Experiments

- We train three off-the-shelf RL algorithms (w/ and w/o MAQ) on four Adroit tasks and evaluate their human-likeness and performance
 - Human-likeness: MAQ-based agents significantly outperform original RL
 - Performance: MAQ-based agents also achieve comparable success rates

Tasks		BC	IQL	MAQ+IQL	SAC	MAQ+SAC	RLPD	MAQ+RLPD
Door	$\mathrm{DTW}_s(\uparrow)$	0.18 ± 0.09	0.43 ± 0.06	$\textbf{0.84} \pm \textbf{0.06}$	-0.39 ± 0.10	$\textbf{0.80} \pm \textbf{0.08}$	-0.06 ± 0.04	$\textbf{0.76} \pm \textbf{0.04}$
	$\mathrm{DTW}_a(\uparrow)$	0.42 ± 0.13	0.61 ± 0.04	$\textbf{0.95} \pm \textbf{0.01}$	-0.25 ± 0.04	$\textbf{0.91} \pm \textbf{0.03}$	0.28 ± 0.08	$\textbf{0.91} \pm \textbf{0.05}$
	$\mathrm{WD}_s(\uparrow)$	0.32 ± 0.05	0.48 ± 0.05	$\textbf{0.75} \pm \textbf{0.05}$	-0.28 ± 0.02	$\textbf{0.71} \pm \textbf{0.08}$	-0.14 ± 0.04	$\textbf{0.71} \pm \textbf{0.03}$
	$WD_a(\uparrow)$	0.41 ± 0.08	0.50 ± 0.02	$\textbf{0.81} \pm \textbf{0.03}$	-0.15 ± 0.02	$\textbf{0.77} \pm \textbf{0.07}$	0.10 ± 0.02	$\textbf{0.76} \pm \textbf{0.03}$
	Success(†)	0.02 ± 0.01	0.16 ± 0.06	$\textbf{0.93} \pm \textbf{0.04}$	0.43 ± 0.23	$\textbf{0.56} \pm \textbf{0.50}$	$\textbf{0.96} \pm \textbf{0.07}$	0.93 ± 0.05
Hammer	$\mathrm{DTW}_s(\uparrow)$	-0.16 ± 0.07	-0.14 ± 0.34	$\textbf{0.64} \pm \textbf{0.17}$	-1.10 ± 0.35	$\textbf{0.61} \pm \textbf{0.21}$	-0.03 ± 0.14	$\textbf{0.68} \pm \textbf{0.17}$
	$\mathrm{DTW}_a(\uparrow)$	0.47 ± 0.02	0.45 ± 0.20	$\textbf{0.92} \pm \textbf{0.06}$	-0.33 ± 0.11	$\textbf{0.91} \pm \textbf{0.10}$	0.37 ± 0.08	$\textbf{0.94} \pm \textbf{0.07}$
	$\mathrm{WD}_s(\uparrow)$	0.11 ± 0.06	0.12 ± 0.13	$\textbf{0.75} \pm \textbf{0.03}$	-0.44 ± 0.09	$\textbf{0.64} \pm \textbf{0.12}$	-0.03 ± 0.08	$\textbf{0.76} \pm \textbf{0.04}$
	$WD_a(\uparrow)$	0.30 ± 0.03	0.30 ± 0.10	$\textbf{0.84} \pm \textbf{0.02}$	-0.19 ± 0.04	$\textbf{0.78} \pm \textbf{0.11}$	0.20 ± 0.03	$\textbf{0.85} \pm \textbf{0.03}$
	$Success(\uparrow)$	0.00 ± 0.00	0.01 ± 0.01	0.00 ± 0.00	$\textbf{0.01} \pm \textbf{0.01}$	0.00 ± 0.00	$\textbf{1.00} \pm \textbf{0.00}$	0.56 ± 0.37
Pen	$\mathrm{DTW}_s(\uparrow)$	0.53 ± 0.13	0.34 ± 0.09	$\textbf{0.55} \pm \textbf{0.17}$	0.06 ± 0.20	$\textbf{0.58} \pm \textbf{0.17}$	0.48 ± 0.24	$\textbf{0.54} \pm \textbf{0.18}$
	$\mathrm{DTW}_a(\uparrow)$	0.58 ± 0.05	0.51 ± 0.05	$\textbf{0.58} \pm \textbf{0.09}$	-0.34 ± 0.16	$\textbf{0.58} \pm \textbf{0.11}$	0.40 ± 0.17	$\textbf{0.59} \pm \textbf{0.13}$
	$\mathrm{WD}_s(\uparrow)$	0.59 ± 0.12	0.54 ± 0.11	$\textbf{0.59} \pm \textbf{0.13}$	0.29 ± 0.10	$\textbf{0.61} \pm \textbf{0.12}$	0.49 ± 0.08	$\textbf{0.59} \pm \textbf{0.12}$
	$WD_{\alpha}(\uparrow)$	0.65 ± 0.14	0.63 ± 0.12	$\textbf{0.66} \pm \textbf{0.15}$	0.22 ± 0.15	$\textbf{0.67} \pm \textbf{0.14}$	0.44 ± 0.12	$\textbf{0.66} \pm \textbf{0.14}$
	Success(↑)	0.40 ± 0.03	0.40 ± 0.05	$\textbf{0.42} \pm \textbf{0.07}$	0.32 ± 0.09	$\textbf{0.41} \pm \textbf{0.01}$	$\textbf{0.62} \pm \textbf{0.09}$	0.42 ± 0.05
Relocate	$\mathrm{DTW}_s(\uparrow)$	0.09 ± 0.14	0.20 ± 0.20	$\textbf{0.52} \pm \textbf{0.06}$	-0.55 ± 0.20	$\textbf{0.25} \pm \textbf{0.19}$	0.03 ± 0.13	$\textbf{0.27} \pm \textbf{0.14}$
	$\mathrm{DTW}_a(\uparrow)$	0.47 ± 0.15	0.51 ± 0.11	$\textbf{0.82} \pm \textbf{0.01}$	-0.10 ± 0.16	$\textbf{0.66} \pm \textbf{0.09}$	0.32 ± 0.13	$\textbf{0.69} \pm \textbf{0.10}$
	$\mathrm{WD}_s(\uparrow)$	0.27 ± 0.15	0.36 ± 0.06	$\textbf{0.47} \pm \textbf{0.07}$	-0.22 ± 0.06	$\textbf{0.40} \pm \textbf{0.07}$	0.02 ± 0.07	$\textbf{0.38} \pm \textbf{0.09}$
	$WD_{\alpha}(\uparrow)$	0.45 ± 0.12	0.50 ± 0.04	$\textbf{0.65} \pm \textbf{0.03}$	-0.05 ± 0.03	$\textbf{0.61} \pm \textbf{0.03}$	0.20 ± 0.03	$\textbf{0.55} \pm \textbf{0.08}$
	Success(↑)	0.01 ± 0.02	0.00 ± 0.00	$\textbf{0.20} \pm \textbf{0.10}$	0.00 ± 0.00	$\textbf{0.14} \pm \textbf{0.07}$	0.14 ± 0.03	$\textbf{0.17} \pm \textbf{0.10}$

DTW: Dynamic Time Warping

WD: Wasserstein Distance

s: state distance between agent and humans

a: action distance between agent and humans

Experiments

- We train three off-the-shelf RL algorithms (w/ and w/o MAQ) on four Adroit tasks and evaluate their human-likeness and performance
 - Human-likeness: MAQ-based agents significantly outperform original RL
 - Performance: MAQ-based agents also achieve comparable success rates

Tasks		BC	IQL	MAQ+IQL	SAC	MAQ+SAC	RLPD	MAQ+RLPD
Door	$\mathrm{DTW}_s(\uparrow)$	0.18 ± 0.09	0.43 ± 0.06	$\textbf{0.84} \pm \textbf{0.06}$	-0.39 ± 0.10	$\textbf{0.80} \pm \textbf{0.08}$	-0.06 ± 0.04	$\textbf{0.76} \pm \textbf{0.04}$
	$\mathrm{DTW}_a(\uparrow)$	0.42 ± 0.13	0.61 ± 0.04	$\textbf{0.95} \pm \textbf{0.01}$	-0.25 ± 0.04	$\textbf{0.91} \pm \textbf{0.03}$	0.28 ± 0.08	$\textbf{0.91} \pm \textbf{0.05}$
	$\mathrm{WD}_s(\uparrow)$	0.32 ± 0.05	0.48 ± 0.05	$\textbf{0.75} \pm \textbf{0.05}$	-0.28 ± 0.02	$\textbf{0.71} \pm \textbf{0.08}$	-0.14 ± 0.04	$\textbf{0.71} \pm \textbf{0.03}$
	$WD_{\alpha}(\uparrow)$	0.41 ± 0.08	0.50 ± 0.02	0.81 ± 0.03	-0.15 ± 0.02	0.77 ± 0.07	0.10 ± 0.02	$\textbf{0.76} \pm \textbf{0.03}$
	Success(↑)	0.02 ± 0.01	0.16 ± 0.06	0.93 ± 0.04	0.43 ± 0.23	$\textbf{0.56} \pm \textbf{0.50}$	$\textbf{0.96} \pm \textbf{0.07}$	0.93 ± 0.05
Hammer	$\mathrm{DTW}_s(\uparrow)$	-0.16 ± 0.07	-0.14 ± 0.34	$\textbf{0.64} \pm \textbf{0.17}$	-1.10 ± 0.35	$\textbf{0.61} \pm \textbf{0.21}$	-0.03 ± 0.14	$\textbf{0.68} \pm \textbf{0.17}$
	$\mathrm{DTW}_a(\uparrow)$	0.47 ± 0.02	0.45 ± 0.20	$\textbf{0.92} \pm \textbf{0.06}$	-0.33 ± 0.11	$\textbf{0.91} \pm \textbf{0.10}$	0.37 ± 0.08	$\textbf{0.94} \pm \textbf{0.07}$
	$\mathrm{WD}_s(\uparrow)$	0.11 ± 0.06	0.12 ± 0.13	$\textbf{0.75} \pm \textbf{0.03}$	-0.44 ± 0.09	$\textbf{0.64} \pm \textbf{0.12}$	-0.03 ± 0.08	$\textbf{0.76} \pm \textbf{0.04}$
	$WD_{\alpha}(\uparrow)$	0.30 ± 0.03	0.30 ± 0.10	$\textbf{0.84} \pm \textbf{0.02}$	-0.19 ± 0.04	$\textbf{0.78} \pm \textbf{0.11}$	0.20 ± 0.03	$\textbf{0.85} \pm \textbf{0.03}$
	Success(↑)	0.00 ± 0.00	$\textbf{0.01} \pm \textbf{0.01}$	0.00 ± 0.00	$\textbf{0.01} \pm \textbf{0.01}$	0.00 ± 0.00	$\textbf{1.00} \pm \textbf{0.00}$	0.56 ± 0.37
Pen	$\mathrm{DTW}_s(\uparrow)$	0.53 ± 0.13	0.34 ± 0.09	$\textbf{0.55} \pm \textbf{0.17}$	0.06 ± 0.20	$\textbf{0.58} \pm \textbf{0.17}$	0.48 ± 0.24	$\textbf{0.54} \pm \textbf{0.18}$
	$\mathrm{DTW}_a(\uparrow)$	0.58 ± 0.05	0.51 ± 0.05	$\textbf{0.58} \pm \textbf{0.09}$	-0.34 ± 0.16	$\textbf{0.58} \pm \textbf{0.11}$	0.40 ± 0.17	$\textbf{0.59} \pm \textbf{0.13}$
	$\mathrm{WD}_s(\uparrow)$	0.59 ± 0.12	0.54 ± 0.11	$\textbf{0.59} \pm \textbf{0.13}$	0.29 ± 0.10	$\textbf{0.61} \pm \textbf{0.12}$	0.49 ± 0.08	$\textbf{0.59} \pm \textbf{0.12}$
	$WD_{\alpha}(\uparrow)$	0.65 ± 0.14	0.63 ± 0.12	$\textbf{0.66} \pm \textbf{0.15}$	0.22 ± 0.15	$\textbf{0.67} \pm \textbf{0.14}$	0.44 ± 0.12	$\textbf{0.66} \pm \textbf{0.14}$
	Success(↑)	0.40 ± 0.03	0.40 ± 0.05	$\textbf{0.42} \pm \textbf{0.07}$	0.32 ± 0.09	$\textbf{0.41} \pm \textbf{0.01}$	$\textbf{0.62} \pm \textbf{0.09}$	0.42 ± 0.05
Relocate	$\mathrm{DTW}_s(\uparrow)$	0.09 ± 0.14	0.20 ± 0.20	$\textbf{0.52} \pm \textbf{0.06}$	-0.55 ± 0.20	$\textbf{0.25} \pm \textbf{0.19}$	0.03 ± 0.13	$\textbf{0.27} \pm \textbf{0.14}$
	$\mathrm{DTW}_a(\uparrow)$	0.47 ± 0.15	0.51 ± 0.11	$\textbf{0.82} \pm \textbf{0.01}$	-0.10 ± 0.16	$\textbf{0.66} \pm \textbf{0.09}$	0.32 ± 0.13	$\textbf{0.69} \pm \textbf{0.10}$
	$\mathrm{WD}_s(\uparrow)$	0.27 ± 0.15	0.36 ± 0.06	$\textbf{0.47} \pm \textbf{0.07}$	-0.22 ± 0.06	$\textbf{0.40} \pm \textbf{0.07}$	0.02 ± 0.07	$\textbf{0.38} \pm \textbf{0.09}$
	$WD_{\alpha}(\uparrow)$	0.45 ± 0.12	0.50 ± 0.04	$\textbf{0.65} \pm \textbf{0.03}$	-0.05 ± 0.03	$\textbf{0.61} \pm \textbf{0.03}$	0.20 ± 0.03	$\textbf{0.55} \pm \textbf{0.08}$
	Success(↑)	0.01 ± 0.02	0.00 ± 0.00	$\textbf{0.20} \pm \textbf{0.10}$	0.00 ± 0.00	$\textbf{0.14} \pm \textbf{0.07}$	0.14 ± 0.03	$\textbf{0.17} \pm \textbf{0.10}$

DTW: Dynamic Time Warping

WD: Wasserstein Distance

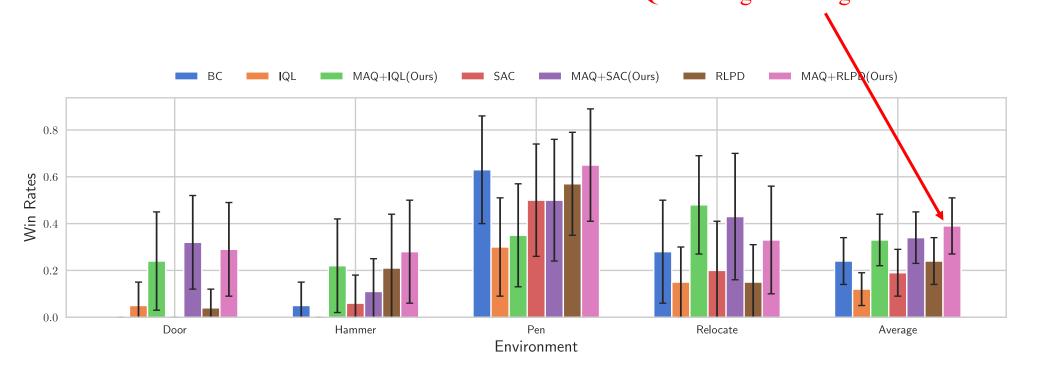
s: state distance between agent and humans

a: action distance between agent and humans

Human Study

• We further evaluate the human-likeness of the agents through a human evaluation study

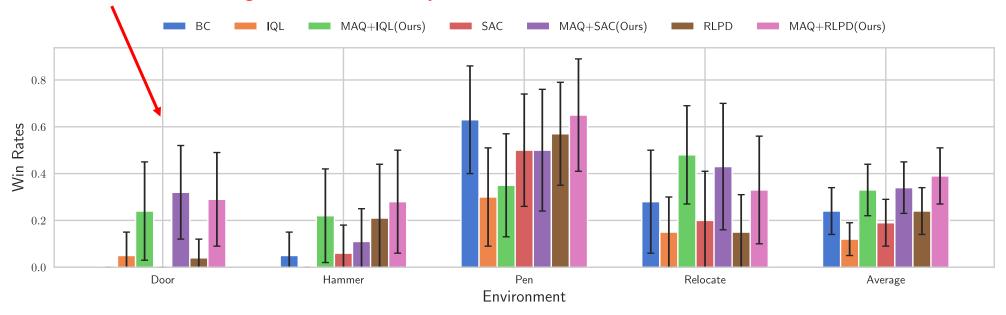
- We conduct a two-stage 2AFC questionnaire
 - **Turing Test**: evaluators are shown two videos, one from a *human demonstration* and the other from *the trained agent*



Experiments (Turing Test)

• MAQ-based agents achieve higher win rates compared to non-MAQ-based agents

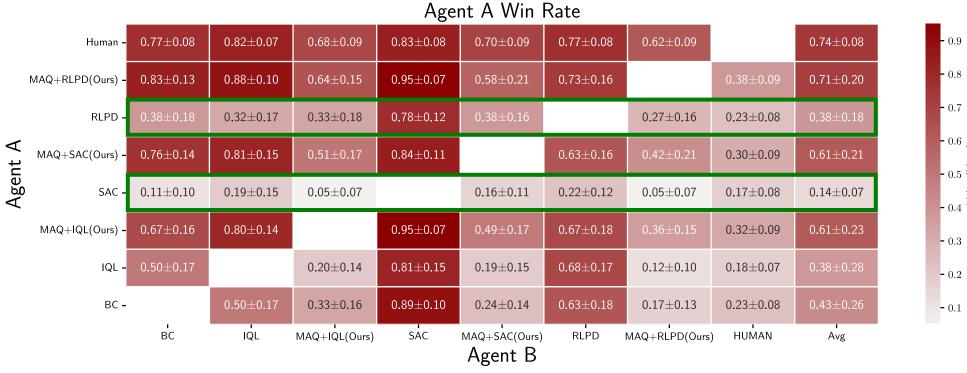
MAQ+RLPD gets the highest win rate overall



Experiments (Turing Test)

• MAQ-based agents achieve higher win rates compared to non-MAQ-based agents

RLPD and SAC, reward-driven RL agents achieve nearly 0% win rates


Human Study

- We further evaluate the human-likeness of the agents through a human evaluation study
- We conduct a two-stage 2AFC questionnaire
 - **Turing Test**: evaluators are shown two videos, one from a *human demonstration* and the other from *the trained agent*
 - **Human-likeness ranking test**: Similar to the Turing Test, but both may be trained agents

Experiments (Human-likeness Ranking Test)

• Reward-driven agents are easy to distinguish from their play by a computer

Experiments (Human-likeness Ranking Test)

• MAQ+RLPD achieves a 71% win rate across all agent pairs, achieving performance comparable to the human demonstration's 74% win rate

Agent A Win Rate 0.70 ± 0.09 0.74 ± 0.08 0.77 ± 0.08 0.82 ± 0.07 0.68 ± 0.09 0.83 ± 0.08 0.77 ± 0.08 0.62 ± 0.09 Human -MAQ+RLPD(Ours) - 0.83 ± 0.13 0.88 ± 0.10 0.64 ± 0.15 0.95 ± 0.07 0.58 ± 0.21 0.73 ± 0.16 0.71 ± 0.20 0.32 ± 0.17 0.33 ± 0.18 0.27 ± 0.16 0.23 ± 0.08 0.38 ± 0.18 0.78 ± 0.12 Agent A MAQ+SAC(Ours) - 0.76 ± 0.14 0.81 ± 0.15 0.51 ± 0.17 0.42 ± 0.21 0.61 ± 0.21 0.84 ± 0.11 0.63 ± 0.16 0.30 ± 0.09 SAC - 0.11 ± 0.10 $0.05 {\pm} 0.07$ 0.16 ± 0.11 0.22 ± 0.12 0.05 ± 0.07 0.19 ± 0.15 0.17 ± 0.08 0.14 ± 0.07 MAQ+IQL(Ours) - 0.67 ± 0.16 0.80 ± 0.14 0.49 ± 0.17 0.67 ± 0.18 0.32 ± 0.09 0.61 ± 0.23 0.95 ± 0.07 0.50 ± 0.17 0.20 ± 0.14 0.19 ± 0.15 0.12 ± 0.10 0.81 ± 0.15 0.68 ± 0.17 0.18 ± 0.07 0.38 ± 0.28 IQL -BC - 0.50 ± 0.17 0.33 ± 0.16 0.89 ± 0.10 0.24 ± 0.14 0.63 ± 0.18 0.17 ± 0.13 0.23 ± 0.08 0.43 ± 0.26 MAQ+SAC(Ours) BC MAQ+IQL(Ours) MAQ+RLPD(Ours) IQL RLPD **HUMAN** Avg Agent B

- 0.9

- 0.8

- 0.7

- 0.3

- 0.2

- 0.1

Summary

- We investigate Human-Like Reinforcement Learning, which seeks both human-like behavior and optimal performance
 - An important direction for the future
 - Benefit to human-AI collaboration/interaction and trust in the future
- We propose MAQ, which learns macro actions from human demonstration
 - Directly use human actions to interact with the environment
 - Without the need to predefine behavior constraints or rule-based penalties
- Our results show that MAQ achieves comparable performance and strong human-likeness
 - In the human evaluation study, MAQ-based agent is nearly indistinguishable from humans

Thank You for Your Attention

Our code and data are available at https://rlg.iis.sinica.edu.tw/papers/MAQ

