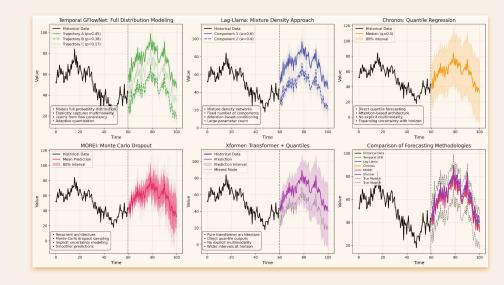
Adaptive Quantization in GFN for Probabilistic Sequential Prediction

Nadhir Hassen, Zhen Zheng, Johan W.Verjans

Overview of Temporal GFN

- 1. Methodology
- 2. Core Innovation
- 3. Key Takeaway
- 4. Experiments and results



What Happens During Training?

Temporal GFN learns to generate **sequences of forecasted values** by taking actions (predicting quantized values) step by step. The key goals are:

- 1. Sample high-reward future trajectories (matching the ground truth),
- 2. Adapt the quantization resolution over time based on model performance,
- Train a forward policy (and optionally backward policy) using Trajectory Balance loss with gradients propagated through Straight-Through Estimators (STE).

GFN for Time Series: A forecast Cursor

Goal: Construct initial GFN state from the time series history (context window).

- Given a dataset with time series samples x_{1:T}, we split each into:
 - Context window x_{1:C} → used as input ("observed history").
 - Forecast horizon x_{C+1:C+H} → ground truth to evaluate the prediction.
- The initial state s₀ is constructed as:

$$s_0 = \operatorname{Encoder}(x_{1:C})$$

where the encoder could be an LSTM, Transformer encoder, or sliding-window patch embedding layer. This produces a fixed-length latent representation that the GFN policy can condition on.

- The state representation includes:
 - Latent embedding of the history window,
 - A forecast cursor (step counter t = 0),
 - · Possibly a cache of previously sampled outputs if needed for autoregression.

Discrete Action Space via Quantization

Goal: Convert continuous forecast space into discrete tokens/actions.

• The normalized range of values $[v_{\min}, v_{\max}]$ is partitioned into K bins:

$$\{q_1,q_2,...,q_K\}, \quad q_k=v_{\min}+(k-0.5)\cdot\Delta, \quad \Delta=rac{v_{\max}-v_{\min}}{K}$$

- These quantized centers q_k act as tokens. At each forecasting step t, the GFN chooses one token
 q_k as the predicted value for x_{C+t+1}.
- Each GFN action is selecting one of these bins:

$$a_t \in \{q_1, q_2, ..., q_K\}$$

The quantized value is appended to the state, updating the forecast:

$$s_{t+1} = s_t \cup \{a_t\}$$

Trajectory Construction via Forward Policy

Goal: Build a full trajectory $au=(a_0,...,a_{H-1})$ of quantized forecasts using a learned policy.

At each time step $t \in [0, H-1]$:

- 1. Forward Policy Sampling:
 - Compute logits $\mathbf{z}_t = f_{\theta}(s_t) \in \mathbb{R}^K$
 - · Convert to probabilities over actions:

$$P_F(a_t = q_k | s_t) = \operatorname{softmax}(z_{t,k})$$

- 2. Action Selection via STE:
 - Hard forward action: sample or take argmax over P_F ightarrow yields discrete token $a_t^{
 m hard}=q_k$
 - · Soft value for gradient: compute expected value:

$$a_t^{ ext{soft}} = \sum_k q_k \cdot P_F(a_t = q_k \mid s_t)$$

- 3. State Update:
 - Append discrete $a_t^{
 m hard}$ to current sequence.
 - Update st+1 with new time step's embedding (can use a positional encoding or RNN hidden state update).
 - Repeat for H steps to get complete trajectory $au = (a_0,...,a_{H-1})$

Reward Computation

Goal: Evaluate trajectory quality by comparing with true future values.

Let true future be $y=x_{C+1:C+H}$, predicted quantized values $z=(a_0,...,a_{H-1})$

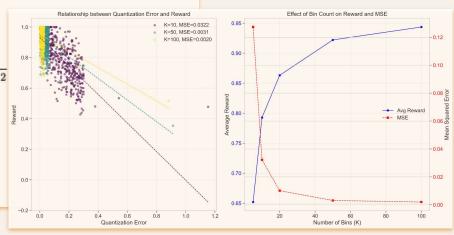
Define normalized squared error:

$$ext{NSE}(z,y) = rac{1}{H} \sum_{t=1}^H rac{(z_t - y_t)^2}{(v_{ ext{max}} - v_{ ext{min}})^2}$$

Define exponential reward:

$$R(au) = \exp(-eta \cdot \mathrm{NSE}(z,y))$$

where β is a scaling constant (e.g., 5–20).



Adaptive Quantization Update

Goal: Adjust number of bins K based on model learning progress.

After each epoch:

- 1. Track:
 - Recent average reward improvement ΔR_e
 - Policy entropy $H_e = \mathbb{E}_t[H(P_F(a_t|s_t))] \in [0,1]$
- 2. Update factor:

$$\eta_e = 1 + \lambda \left(rac{\max(0,\epsilon - \Delta R_e)}{\epsilon} + (1 - H_e)
ight)$$

3. New bin count:

$$K_e = \min(K_{\max}, \lfloor K_{e-1} \cdot \eta_e
floor)$$

- 4. Re-quantize bins:
 - Uniformly repartition $[v_{\min}, v_{\max}]$ into new K_e bins.
 - Optionally interpolate soft logits from old K to new K if needed.



Loss and training Objective

Goal: Train forward policy (and optionally backward policy) to match desired sampling distribution $P^*(\tau) \propto R(\tau)$

Trajectory Balance Loss:

For trajectory $au = (s_0 o s_1 o \cdots o s_H)$:

$$\mathcal{L}_{TB} = \left(\log Z + \sum_{t=0}^{H-1} \log P_F(a_t \mid s_t) - \sum_{t=1}^{H} \log P_B(s_{t-1} \mid s_t) - \log R(au)
ight)^2$$

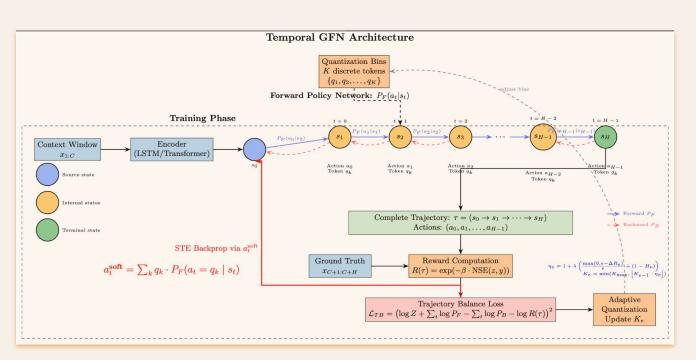
· Optional entropy regularization:

$$\mathcal{L}_{ ext{entropy}} = -\lambda_H \sum_{t=0}^{H-1} H(P_F(\cdot|s_t))$$

Total loss:

$$\mathcal{L}_{ ext{total}} = \mathcal{L}_{TB} + \mathcal{L}_{ ext{entropy}}$$

GFN Architecture



Experiments and results

Table 1: Aggregated Relative Performance vs. RL/MCMC on Benchmark I.

Method	CRPS (↓)	WQL (\dagger)	MASE (↓)	Avg. Improv. (%)
Temporal GFN (Adaptive K20)	0.1674	0.2273	0.8938	-
Temporal GFN (Fixed K20)	0.1781	0.2401	0.9363	-5.9%
Temporal GFN (Learned Pol. Adapt K10)	0.1453	0.2137	1.0345	+6.0%*
PPO	0.2299	0.3013	1.1759	-25.1%
SAC	0.2423	0.3227	1.2491	-29.5%
MCMC	0.2673	0.3522	1.3523	-35.5%

^{*}Avg. Improv. for Learned Policy calculated based on CRPS/WQL vs Adaptive K20.

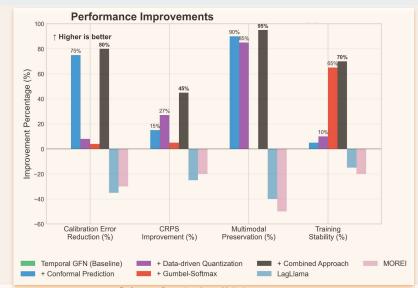
Table 2: Aggregated Relative Performance vs. SOTA Models (In-Domain / Zero-Shot).

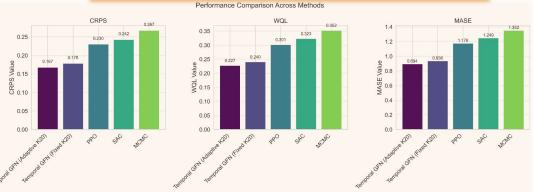
Model	Eval Setting	CRPS (↓)	$WQL\left(\downarrow \right)$	MASE (↓)	Calib. Err. (↓)	Multimod. (†)
Temporal GFN	Zero-Shot / In-Domain	0.1542	0.2158	0.9378	0.0348	0.8762
Lag-Llama	Zero-Shot / Pretrained	0.1675	0.2401	0.9532	0.0623	0.7234
Chronos (Base)	Zero-Shot / Pretrained	0.1731	0.2534	1.0273	0.0571	0.6957
MOREI (Base)	Task-Specific Trained	0.1859	0.2678	1.0871	0.0745	0.6182
TimeFM	Task-Specific Trained	0.2076	0.2846	1.1258	0.1183	0.3012
Temporal GFN (Learned Pol.)	In-Domain	0.1453	0.2137	1.0345	-	-

Main Temporal GFN results reflect strong performance across settings. Calib. Err. & Multimod. primarily from healthcare/extended benchmarks. Task-Specific models trained per dataset. Learned Policy results from Table 3.

Table 3: Ablation Study Configurations and Main Results.

Experiment Config	Quantization	Start K	Policy Type	CRPS	WQL	MASE
Fixed K=10	fixed	10	uniform	0.1546	0.2346	1.1946
Fixed K=20	fixed	20	uniform	0.1921	0.2521	0.9721
Adaptive K=10	adaptive	10	uniform	0.1688	0.2408	1.1048
Adaptive K=20	adaptive	20	uniform	0.1845	0.2385	0.9532
Learned Policy (Adapt K10)	adaptive	10	learned	0.1453	0.2137	1.0345





Thank You!