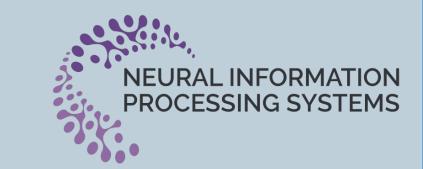
MGE-LDM: Joint Latent Diffusion for Simultaneous Music Generation and Source Extraction

Yunkee chae and Kyogu Lee. Music and Audio Research Group (MARG), Seoul National University {yunkimo95, kglee}@snu.ac.kr



TL;DR

We propose a joint latent diffusion model that unifies music generation, source imputation, and text-guided source extraction within a single framework

Our Idea / Contributions

- ❖ Jointly models **mixture**, **submixture**, **and source** tracks in a shared latent space, so all tasks are cast as conditional inpainting.
- ❖ Performs total generation / source imputation / text-guided source extraction with a more flexible, joint multi-track design.
- Uses track-dependent diffusion timesteps to better learn conditional scores for partially observed multi-track inputs
- Class- and dataset-agnostic: no fixed instrument labels are required, so we can train on any combination of multi-track music datasets.

Motivation

- ❖ A recent line of work has focused on simultaneous music generation and separation [1,2]
- However, prior methods typically assume a fixed set of four stem classes: drums, bass, guitar, and piano.
- In addition, some works rely on a waveform additivity assumption, which does not hold well in latent space.

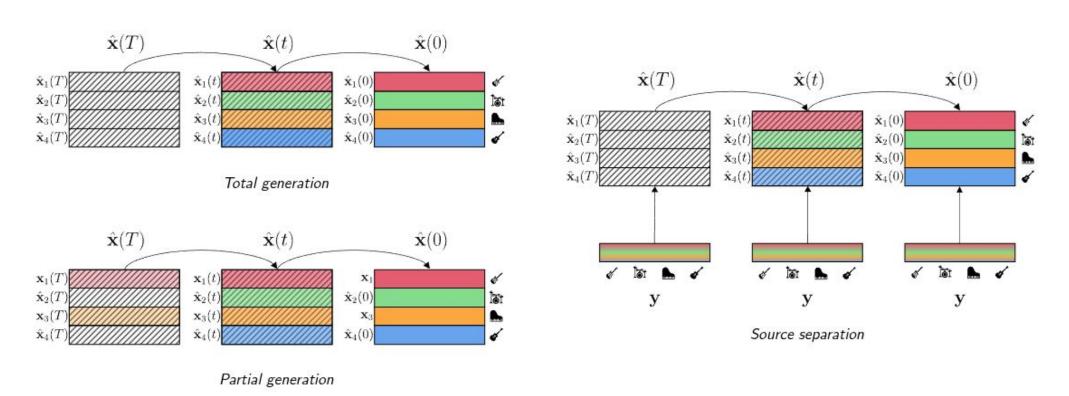
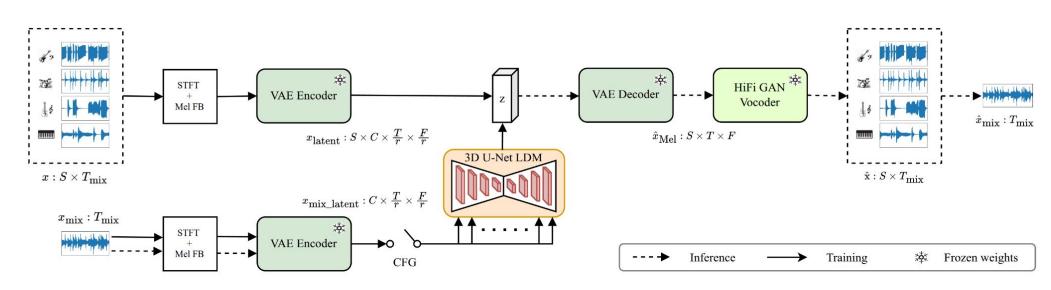
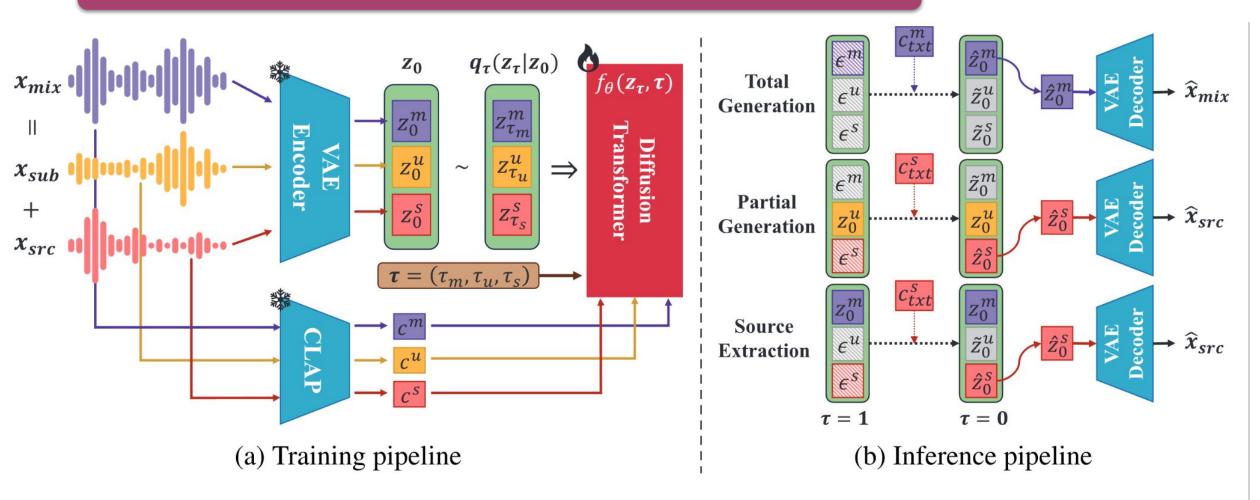


Fig. 1: Multi-track modeling approach of Mariani et al. [1], capable of handling three tasks within a single model. The diffusion model operates directly in waveform domain.



Flg. 2: Work by Karchkhadze et al. [2], which performs the same tasks as [1] using latent diffusion model.

How It Works



Joint Latent Diffusion Training

Triplet data: mix, submix, source

$$\mathbf{z}_0 = \left(z_0^{(m)}, z_0^{(u)}, z_0^{(s)}\right) \in \mathbb{R}^{3 \times C \times L}$$

v-objective diffusion

$$\mathbf{z}_{\tau} = \alpha_{\tau} \mathbf{z}_{0} + \beta_{\tau} \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

$$\mathcal{L}(\theta) = \mathbb{E}_{\mathbf{z}_0, \boldsymbol{\epsilon}, \tau} \left| \left| f_{\theta}(\mathbf{z}_{\tau}, \tau, \mathbf{c}) - \boldsymbol{v}_{\tau} \right| \right|_{2}^{2}, \quad \boldsymbol{v}_{\tau} = \frac{\partial \mathbf{z}_{\tau}}{\partial \phi_{\tau}} = \alpha_{\tau} \boldsymbol{\epsilon} - \beta_{\tau} \mathbf{z}_{0}$$

Inference via Conditional Sampling

> Total Generation

$$\hat{z}^{(m)}, \tilde{z}^{(u)}, \tilde{z}^{(s)} \sim p_{\theta}(z^{(m)}, z^{(u)}, z^{(s)} | c^{(m)}, \varnothing, \varnothing)$$

Partial Generation

$$\tilde{z}_{j}^{(m)}, \hat{z}_{j}^{(s)} \sim p_{\theta}(z^{(m)}, z^{(s)} | z_{j-1}^{(u)}, \varnothing, \varnothing, c_{j}^{(s)})$$

Source Extraction

$$\tilde{z}^{(u)}, \hat{z}^{(s)} \sim p_{\theta}(z^{(u)}, z^{(s)} \mid z^{(m)}, \varnothing, \varnothing, c^{(s)})$$

Track-aware Inpainting with Adaptive Timesteps

- Instead of applying the same diffusion timestep to all tracks, we assign track-specific
 timesteps. This approach improves conditional score learning for partially observed inputs.
- Inspired by TD-Paint [3], we compute **per-track timestep vectors** and adjust the corruption process and v-objectives accordingly:

$$\mathbf{z}_{\tau} = \alpha_{\tau} \odot \mathbf{z}_0 + \beta_{\tau} \odot \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

$$\mathbf{v}_{\tau} = \alpha_{\tau} \odot \boldsymbol{\epsilon} - \beta_{\tau} \odot \mathbf{z}_0$$

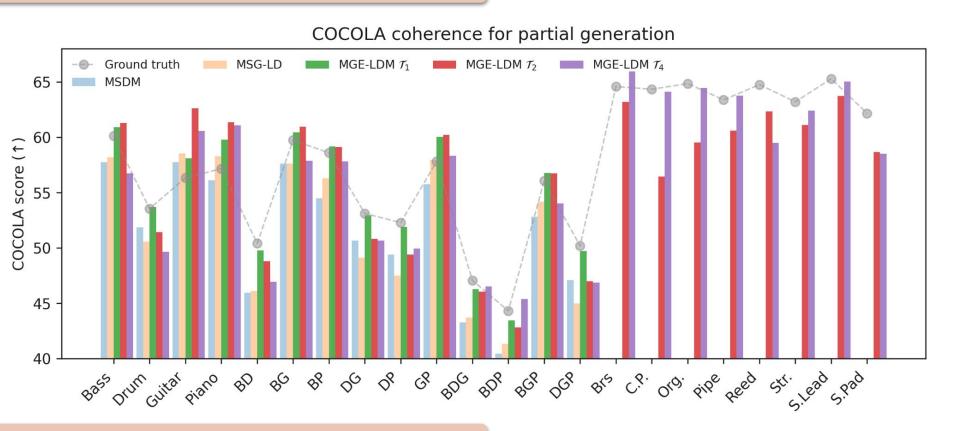
$$\tau \in \{(\tau, \tau, \tau), (0, \tau, \tau), (\tau, 0, \tau), (\tau, \tau, 0)\}$$

Results

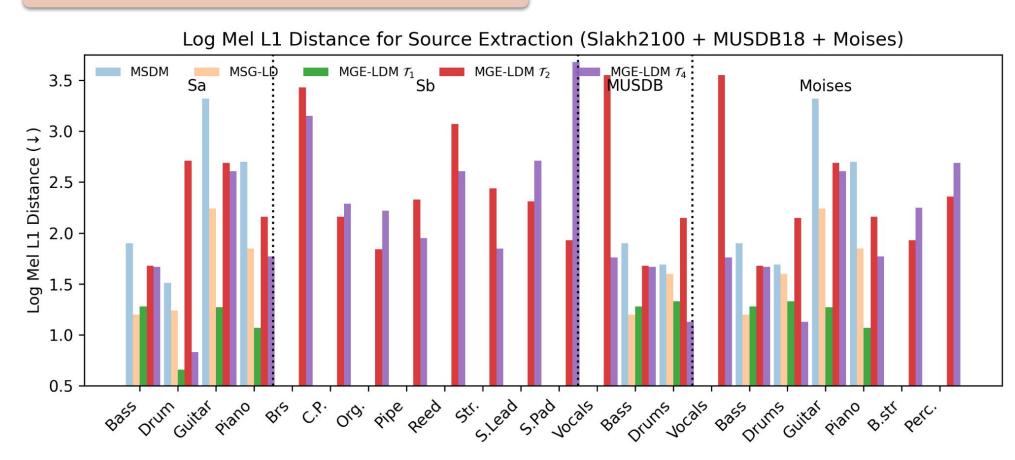
Total Generation

Model		Train Set				Test Set			
		\mathbf{S}_A	\mathbf{S}_{B}	\mathbf{M}_u	\mathbf{M}_{o}	$oldsymbol{S}_A$	$\mathbf{S}_{\mathrm{Full}}$	\mathbf{M}_u	\mathbf{M}_{o}
MSDM	MSDM		×	×	X	4.21	6.04	7.92	7.41
MSG-I	MSG-LD		X	\times	X	1.38	<u>1.55</u>	<u>4.61</u>	<u>4.26</u>
MGE (ours)	\mathcal{T}_1	√	X	X	×	<u>0.47</u> (3.57)	1.79	6.34	5.90
	$\overline{\mathcal{T}_2}$	√	√	×	X	3.14 (2.24)	0.63	5.46	4.73
	\mathcal{T}_3	X	X	\checkmark	√	8.80 (3.96)	6.56	2.87	1.59
	\mathcal{T}_4	√	√	√	√	6.83 (5.05)	4.22	2.78	1.47

Partial Generation



Source Extraction



Adaptive Timestep Ablation (Source Extraction)

