Limitations of Normalization in Attention Mechanism

Timur Mudarisov¹ Mikhail Burtsev² Tatiana Petrova¹ Radu State¹ October 20, 2025

University of Luxembourg London Institute for Mathematical Sciences

Outline

Motivation

Contributions

Distance Bound

Geometric Separability

Gradient Sensitivity

Empirical Validation

Implications

Conclusion

Motivation

Why Normalization in Attention Matters

- 1. **Attention is a selector**: it must prioritize informative tokens among many.
- 2. **Softmax causes vanishing attention** as context length *L* grows:

$$\alpha_i = O\left(\frac{1}{L}\right)$$

- 3. Consequences
 - Loss of discriminative power between tokens
 - Noise dominating relevant context
 - Unstable gradients when aggressively sharpening

Problem Setting

We study attention as a **general normalized selection mechanism**.

Input: sequence embeddings $X = \{x_i\}_{i=1}^L$, $x_i \in \mathbb{R}^d$, and

$$q_m = f_q(x_m), \quad k_n = f_k(x_n), \quad v_n = f_v(x_n).$$

General attention normalisation:

$$a_{m,n} = \frac{F(q_m^{\top} k_n; \theta)}{\sum_{j=1}^{L} F(q_m^{\top} k_j; \theta)},$$
(1)

where $F : \mathbb{R} \to \mathbb{R}_{\geq 0}$ is a positive **scoring function**.

Goal: Examine following points:

- capacity to separate informative vs. non-informative tokens,
- geometric structure of selected tokens,
- gradient stability during training.

Contributions

Contributions

We provide a quantitative analysis of attention as a capacity-limited selector.

1. Distance bound:

- Derive non-asymptotic upper bounds on representation distance
- ullet Show collapse when the active set size N grows proportionally to context length L

2. Geometric separability bound:

- Analyze attention in embedding space using metric geometry
- $\bullet\,$ Prove that no more than $\sim 80\%$ of selected tokens can be simultaneously separated

3. Gradient sensitivity bound:

- General Jacobian bound for any normalization function F
- Recovers the $\frac{1}{4T}$ instability of softmax as a special case

4. Empirical validation on GPT-2:

Confirm distance collapse, separability saturation, and sharpness-stability trade-off

Key message: normalization fundamentally limits attention capacity.

Distance Bound

Top-*N* **Selection and Representation Distance**

Why study top-N selection?

- In attention, most weights α_i are small only a few tokens matter.
- We model attention as a **token selector**: it highlights the *N* most relevant tokens.

Formal setup:

• Let $I_N = \{i_1, \dots, i_N\} \subset \{1, \dots, L\}$ - indices of largest attention weights. Aggregated context:

$$s = \sum_{i \in I_N} \alpha_i x_i.$$

• Distance to non-selected tokens (loss of separation):

$$\tilde{d} = \sum_{i \in I \setminus I_N} \|\alpha_i x_i - s\|_2.$$

Goal: measure how well attention separates informative from non-informative tokens.

Theorem: Distance Analysis

Theorem 1 (Non-asymptotic Distance Upper Bound)

Let I_N be the indices of the top-N attention weights $\{\alpha_i\}_{i=1}^L$ and $\bar{\alpha}_N = \sum_{i \in I_N} \alpha_i$. Then the representation distance satisfies:

$$\tilde{d} \leq (1 - \bar{\alpha}_N) d_1 + \max_{j \in I_N} \|x_j\|_2^2 \Big[\bar{\alpha}_N(L - N) - (1 - \bar{\alpha}_N)\Big],$$

where $d_1 = \max_{i \notin I_N, i \in I_N} ||x_i - x_j||_2$.

If I_N is selected uniformly at random among subsets of size N, then

$$\mathbb{E}[\tilde{d}] = \frac{L-N}{L} \sum_{i=1}^{L} \left\| (\alpha_i + \frac{N}{L-1}) x_i - \bar{x} \right\|_2^2 + \varepsilon, \qquad \bar{x} = \sum_{i=1}^{L} \alpha_i x_i.$$

Corollary

If N grows proportionally to sequence length L (i.e. $N = \Theta(L)$), then

$$\tilde{d} \rightarrow 0$$

Geometric Separability

Geometric Separability: Definition of N_s

Assumptions.

- Token embeddings lie on a sphere of radius M; minimum pairwise separation $\delta > 0$.
- Let $I_N = \{i_1, \dots, i_N\}$ be indices of the top-N tokens, and

$$s = \sum_{i \in I_N} \alpha_i x_i$$
 (context from selected tokens).

Radius. Choose a tolerance radius so that all non-selected tokens are outside the ball around s:

$$r := \min_{j \notin I_N} \|\alpha_j x_j - s\|_2. \tag{2}$$

Definition (what we count).

$$N_s := \# \Big\{ i \in I_N : \|\alpha_i x_i - s\|_2 \le r \Big\}.$$
 (3)

Interpretation: among the N selected tokens, N_s are geometrically distinguishable — their (weighted) embeddings stay within the selective ball $B_r(s)$, while every non–selected lies outside.

Interpretation figure

To understand the previous definition better, consider the following figure.

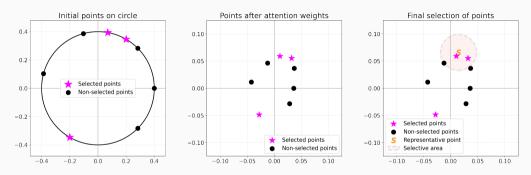


Figure 1: Illustrative example of the geometric separation. Left: Token embeddings lie on a circle. Middle: After scaling by their attention weights α_i , both attended (magenta stars) and non-attended (black dots) points move toward the origin. Right: Only the selected tokens that remain inside the ball $B_r(s)$ (shaded) are deemed distinguishable.

Theorem 2: Bounds on Fraction of Distinguishable Tokens

Theorem (Geometric separability)

Assume embeddings $\{x_i\}_{i=1}^L$ lie on a sphere of radius M with minimum pairwise separation $\delta > 0$. Let I_N be the top-N indices, $s = \sum_{i \in I_N} \alpha_i x_i$, and define

$$r := \min_{j \notin I_N} \|\alpha_j x_j - s\|_2, \qquad N_s := \#\{ i \in I_N : \|\alpha_i x_i - s\|_2 \le r \}.$$

For each $i \in I_N$ set

$$\xi_i^2 = M^2 \sum_{\substack{j \in I_N \\ j \neq i}} \alpha_j^2 + \left(M^2 - \frac{\delta^2}{2}\right) \sum_{\substack{j,k \in I_N \\ j \neq k, j \neq i}} \alpha_j \alpha_k.$$

Then the expected fraction of distinguishable selected tokens satisfies

$$1 - \frac{1}{rN} \sum_{i \in I_N} \xi_i \ \le \ \mathbb{E} \left[\frac{N_s}{N} \right] \ \le \ \frac{1}{N} \sum_{i \in I_N} \exp \left(-\frac{(r - \xi_i)^2}{16M^2} \right).$$

Gradient Sensitivity

Gradient Sensitivity of Attention: Why It Matters

The attention mechanism must be selective to distinguish informative tokens. However, making attention sharper during training exposes a second difficulty: **gradient sensitivity**.

Consider two nearly identical logit vectors:

$$\ell^{(1)} = (0, \dots, 0, a, a + \varepsilon), \qquad \ell^{(2)} = (0, \dots, 0, a + 2\varepsilon, a),$$

with

$$\|\ell^{(1)} - \ell^{(2)}\|_2 = \sqrt{5} \,\varepsilon.$$

Let $\alpha^{(1)}, \alpha^{(2)}$ be the corresponding attention weight vectors. A first-order expansion gives:

$$\|\alpha^{(1)} - \alpha^{(2)}\|_{2} \approx \|\nabla_{\ell}\alpha^{(1)} (\ell^{(1)} - \ell^{(2)})\|_{2} \sim \sqrt{2} \frac{\varepsilon}{T}.$$

Observation: even a tiny change in logits can cause large changes in attention weights when T is small. This makes the gradient step **highly unstable** during training.

Theorem: Gradient Sensitivity of Normalization Functions

Lemma 2 (Jacobian Bound for General Normalizers)

For the attention weights

$$\alpha_i = \frac{F(\ell_i, \theta)}{\sum_{j=1}^L F(\ell_j, \theta)},$$

the Jacobian w.r.t. logits satisfies

$$\|\nabla_{\ell}\alpha\|_{2} \leq \min \left\{ \frac{\|F'\|_{2}}{L \min_{j} F(\ell_{j}, \theta)} + \frac{\|F\|_{2} \|F'\|_{2}}{L^{2} \min_{j} F^{2}(\ell_{j}, \theta)}, \sqrt{2} \right\}.$$

Corollary (Softmax Instability) For the softmax normalization $F(z) = \exp(z/T)$,

$$\|\nabla_{\ell}\alpha\|_2 \leq \min\Big\{\frac{1}{4T}, \sqrt{2}\Big\}.$$

Empirical Validation

Experimental Setup

Model.

- GPT-2 (124M, 12 layers, 12 heads/layer); full attention matrices extracted.
- Hidden size: 768, context length L = 1024.

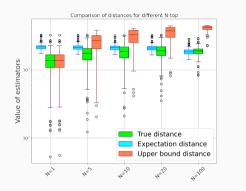
Data.

- Consecutive segments from War and Peace (public domain).
- BPE tokenization (HuggingFace), no truncation beyond context window.
- 1024-token sequences sampled sequentially (no shuffling).

Metrics.

- **Distance:** \tilde{d} from Theorem 1 (collapse analysis).
- **Separability:** N_s/N from Theorem 2 (geometric capacity).
- Sensitivity: finite-difference Jacobian $\|\nabla_{\ell}\alpha\|_2$.

Results: Distance vs. Sequence Length



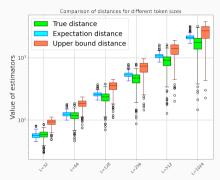


Figure 2: Distance statistics validate Theorem 1. (a) With L=1024, increasing N beyond 20 yields diminishing returns: the distance plateaus while the bound tightens. (b) With N=5, both the true distance (green) and its expectation (blue) grow roughly linearly in L; the red upper bound is safe but conservative.

13/19

Results: Top-*N* **Plateau**

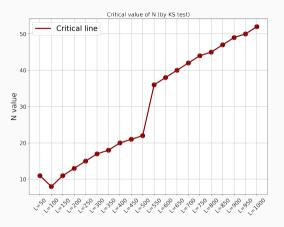


Figure 3: Critical top-N obtained by a KS test ($\alpha = 0.01$); fewer than 6 % of the tokens need to be selected before the empirical and expected distances become statistically indistinguishable.

Results: Geometric Separability Saturation

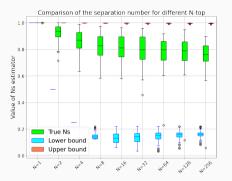


Figure 4: Geometric separability saturates at 70–85%. For increasing top-N, the empirical fraction of distinguishable embeddings N_s/N (green boxes) quickly plateaus; roughly one-fifth of selected tokens remain outside $B_r(s)$. The red line shows the exponential upper bound from Theorem 2, while the blue line shows the conservative lower bound.

Results: Gradient Sensitivity vs. Temperature

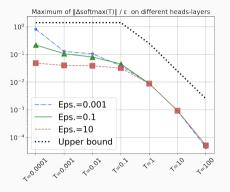


Figure 5: Gradient sensitivity decays as 1/T. Maximum finite-difference Jacobian norm $g(T,\varepsilon)$ for three perturbation magnitudes (coloured curves, log-log scale). The dashed black curve is the theoretical bound $\min\{1/(4T), \sqrt{2}\}$ from gradient's corollary.

Implications

Selectivity vs. Stability Trade-off

From theory:

- From Theorem 1: increasing *N* (active set size) leads to **distance collapse**.
- From Theorem 2: geometric capacity is **bounded** ($N_s/N \le 0.8$ even ideally).
- From Gradient Lemma: sharp attention ($T \rightarrow 0$) explodes sensitivity:

$$\|\nabla_{\ell}\alpha\|_2 \le \frac{1}{4T}.$$

Conclusion: attention cannot be simultaneously

- highly selective (small N, sharp distribution),
- stable during optimization (bounded gradients),
- and robust to long context (large L)

⇒ Every normalization rule must trade off selectivity vs. stability.

Design Guidelines Derived from Theory

The following guidelines follow directly from our theoretical results.

• Control active set size (Theorem 1):

$$N \ll L \quad \Rightarrow \quad \text{avoid distance collapse and loss of token discrimination.}$$

Use small top-k selection or sparsity constraints.

Monitor geometric capacity (Theorem 2):

$$\frac{N_s}{N_l} \rightarrow 0.7 - 0.85 \quad \Rightarrow \quad \text{head is saturated.}$$

Use N_s/N or attention entropy to detect when a head stops being selective.

Avoid sharp softmax (Gradient Lemma):

$$\|
abla_\ell lpha \|_2 \propto rac{1}{T} \quad \Rightarrow \quad T \lesssim 0.1 ext{ leads to unstable gradients.}$$

• Use adaptive normalization: Length-aware (Scalable-Softmax), sparse (Sparsemax/Entmax), or gradient-controlled (SA-Softmax) normalizers mitigate the selectivity—stability trade-off.

Conclusion

Normalization fundamentally limits the capacity of attention.

- Capacity limit: Any F independent of L forces $\alpha_i = O(1/L)$ attention mass vanishes as context grows.
- Distance collapse (Theorem 1): once $N = \Theta(L)$, attention loses separation power between informative and non-informative tokens.
- **Geometric bound (Theorem 2):** at most 70–85% of selected tokens remain geometrically distinguishable heads have finite resolution.
- Gradient instability: sharper distributions amplify sensitivity as $\|\nabla_{\ell}\alpha\|_2 \propto 1/T$.

Implication:

No normalization rule can be simultaneously sharp, stable, and long-context scalable.

