

Learning a Cross-Modal Schrödinger Bridge for Visual Domain Generalization

Hao Zheng, Jingjun Yi, Qi Bi, Huimin Huang, Haolan Zhan, Yawen Huang, Yuexiang Li, Xian Wu, Yefeng Zheng

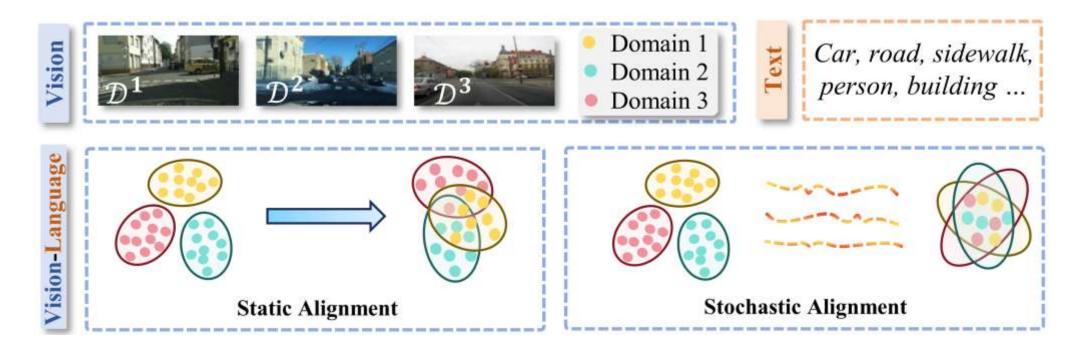
- 1. Westlake University, China
- 2. Jarvis Research Center, Tencent, China

Problem Statement

- Domain generalization aims to train models that perform robustly on unseen target domains without access to target data.
- The realm of vision-language foundation model has opened a new venue owing to its inherent out-of-distribution generalization capability.
- However, the static alignment to class-level textual anchors remains insufficient to handle the dramatic distribution discrepancy from diverse domain-specific visual features.

Motivation

- We propose a novel cross-domain Schrödinger Bridge (SB) method, namely SBGen, to handle this challenge.
- It explicitly formulates the stochastic semantic evolution, to gain better generalization to unseen domains.



Background

What's Schrödinger Bridge (SB)?

Problem Definition. Let \mathcal{X} and \mathcal{Y} denote the space of input images and the space of structured labels from a certain task (e.g., classification). Given a set of labeled source domains $\mathcal{D}^S = \{(x_n^S, y_n^S)\}_{n=1}^{N_S}$ with $x_n^S \in \mathcal{X}, y_n^S \in \mathcal{Y}$, and a set of unseen target domains $\mathcal{D}^U = \{(x_m^U, y_m^U)\}_{m=1}^{N_U}$, the objective is to train a model on source domains that generalizes to these unseen domains.

Definition 1. Optimal Transport (OT). Let P^S and P^U be two probability distributions over \mathbb{R}^C , respectively. The classical OT problem seeks a deterministic transport map $M: \mathbb{R}^C \to \mathbb{R}^C$ minimizing a transport cost:

$$\min_{M:M_{\boldsymbol{x}}P^{S}=P^{U}} \mathbb{E}_{z^{S}\sim P^{S}}\left[\|\boldsymbol{z}^{S}-M(\boldsymbol{z}^{S})\|^{2}\right],$$
(1)

where $M_{\#}P^{S}$ denotes the pushforward measure of P^{S} through M.

Definition 2. Entropy-Regularized OT. A stochastic coupling $\pi(z^S, z^U)$ with marginal constraints $\pi \in \Pi(P^S, P^U)$ is introduced to improve the robustness of OT, minimizing:

$$\min_{\pi \in \Pi(P^S, P^U)} \int \|\boldsymbol{z}^S - \boldsymbol{z}^U\|^2 d\pi(\boldsymbol{z}^S, \boldsymbol{z}^U) + \varepsilon \cdot KL(\pi \| \mathcal{R}), \tag{2}$$

where R is a reference measure and $\varepsilon > 0$ controls the regularization strength, enabling stochastic transport but lacks a notion of dynamics over time.

Definition 3. Schrödinger Bridge (SB). OT is extended to the dynamic setting by introducing a continuous-time stochastic process $\{P_t\}_{t\in[0,1]}$ that evolves from P^S to P^U , while being minimally deviated from a prior diffusion process \mathbb{P} (e.g., Brownian motion). The SB formulation is:

$$\min_{\mathbb{Q}} \mathrm{KL}(\mathbb{Q} \| \mathbb{P}) \quad \text{subject to} \quad \mathbb{Q}_{t=0} = P^{S}, \quad \mathbb{Q}_{t=1} = P^{U}, \tag{3}$$

where \mathbb{Q} denotes the law of the interpolating process over latent features. This yields a family of time-indexed distributions P_t modeling the optimal evolution of visual features across domains.

Method Design

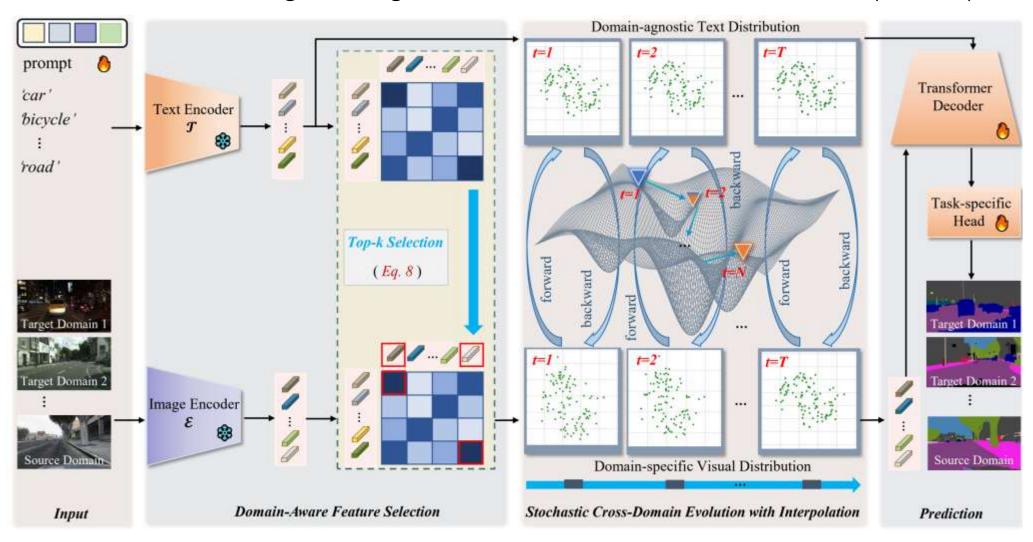
Technically, the proposed SBGen consists of three key components:

(1) text-guided domain-aware feature selection to isolate semantically aligned image tokens;

- (2) stochastic cross-domain evolution to simulate the SB dynamics via a learnable time-conditioned drift;
- (3) stochastic domain-agnostic interpolation to construct semantically grounded feature trajectories.

Framework Overview

Cross-modal Schrödinger Bridge for visual domain Generalization (SBGen)



Experiment

• Experiment 1: Domain Generalization in Classification

Table 1: Comparison with the state-of-the-art methods on PACS, VLCS, OfficeHome, DomainNet and TerraInc. By default the results are cited from [15, 65, 16, 36, 79]. Evaluation metric is classification accuracy (in %). Top three results are highlighted as **best**, second and third, respectively.

	A	0 0					
Method	Venue	PACS	VLCS	OfficeHome	DomainNet	TerraInc	Avg
ResNet-50 Pre-train	ed by ImageNet:		17				iro i
DANN [27]	IJCAI'2016	83.6	78.6	65.9	38.3	46.4	65.6
Fish [63]	ICML'2022	85.5	77.8	68.6	42.7	45.1	63.9
DAC-SC [37]	CVPR'23	87.5	78.7	70.3	44.9	46.5	65.6
SAGM [73]	CVPR'2023	86.6	80.0	70.1	45.0	48.8	66.1
ViT-B/16 Pre-traine	d by CLIP:						
SWAD [12]	NIPS'2021	91.3	79.4	76.9	51.7	45.4	68.9
CLIP [59]	ICML'2021	96.2	81.7	82.0	57.5	33.4	70.2
SMA [3]	NIPS'2022	92.1	79.7	78.1	55.9	48.3	70.8
DUPRG [50]	ICLR'2023	97.1	83.9	83.6	59.6	42.0	73.2
CoOp [86]	IJCV'2022	96.2	77.6	83.9	59.8	48.8	73.3
MIRO [13]	ECCV'2022	95.6	82.2	82.5	54.0	54.3	73.7
SEDGE [43]	ArXiv'2022	96.1	82.2	80.7	54.7	56.8	74.1
DPL [82]	TAI'2023	97.3	84.3	84.2	56.7	52.6	75.0
CLIPOOD [65]	ICML'2023	97.3	85.0	87.0	63.5	60.4	78.6
Promptstyler [16]	ICCV'2023	97.2	82.9	83.6	59.4	(4)	(<u>2</u>)
KAdaptaion [36]	WACV'2025	97.5	83.0	90.3	62.7	51.9	77.1
GESTUR [39]	ICCV'2023	96.0	82.8	84.2	58.9	55.7	75.5
DPR [15]	CVPR'2024	97.5	86.4	86.1	62.1	57.1	77.8
CLIPCEIL++ [79]	NeurIPS'2024	97.2	85.2	87.7	63.6	62.0	79.1
Ours	2025	97.4	86.7	89.9	64.4	63.5	80.4

Experiment

• Experiment 2: Domain Generalization in Segmentation

Table 2: Performance comparison between the proposed method and existing DGSS methods. C: CityScapes [18]; B: BDD-100K [78]; M: Mapillary [47]; S: SYNTHIA [62]; G: GTA5 [61]. '-': results were not reported and official source code is not available; '*': only reported one decimal official results; '†': re-implementation with official source code under default settings. Evaluation metric is mIoU in %. Top three results are highlighted as **best**, second and third, respectively.

Method	Venue	Encoder	$G \rightarrow C$	$\mathbf{G} \to \mathbf{B}$	$G \rightarrow M$	Avg.	$C \rightarrow B$	$C \rightarrow M$	Avg.
ImageNet Pretrained:									
ISW [17]	CVPR'2021	ResNet-101	36.58	35.20	40.33		50.73	58.64	
GTR [56]	TIP'2021	ResNet-101	37.53	33.75	34.52		50.75	57.16	
SHADE [83]	ECCV*2022	ResNet-101	44.65	39.28	43.34		50.95	60.67	
SAW [57]	CVPR'2022	ResNet-101	39.75	37.34	41.86		52.95	59.81	
WildNet [38]	CVPR'2022	ResNet-101	44.62	38.42	46.09		50.94	58.79	
AdvStyle [85]	NeurIPS'2022	ResNet-101	39.62	35.54	37.00		1.0	34	
SPC [30]	CVPR'2023	ResNet-101	44.10	40.46	45.51		52 ± 5	5.5	200
BlindNet [2]	CVPR'2024	ResNet-101	45.72	41.32	47.08	-	51.84	60.18	-
HGFormer* [21]	CVPR'2023	Swin-T	i e.:	0.0	***	2.00	53.4	66.9	
CMFormer [9]	AAAI'2024	Swin-B	55.31	49.91	60.09	-	59.27	71.10	-
VLM Pretrained:									
DIDEX*[49]	WACV*2024	Stable Diffusion	62.0	54.3	63.0	59.7		82	
VLTSeg*[32]	ACCV'2024	CLIP-L	55.6	52.7	59.6	56.0	100	226	
REIN*[74]	CVPR'2024	EVA02-L	65.3	60.5	64.9	63.6	64.1	69.5	66.8
SET* [77]	MM'2024	EVA02-L	66.4	61.8	65.6	64.6		200	-
FADA*[8]	NeurIPS'2024	EVA02-L	66.7	61.9	66.1	64.9			
tqdm [52]	ECCV'2024	EVA02-L	68.88	59.18	70.10	66.05	64.72	76.15	70.44
MGRNet [67]	AAAI 2025	EVA02-L	69.53	61.14	69.97	66.88	64.70	76.43	70.56
Ours		EVA02-L	71.24	62.26	71.91	68.74	66.03	77.90	71.97
			†1.71	†1.12	11.94	11.59	11.33	11.47	11.41

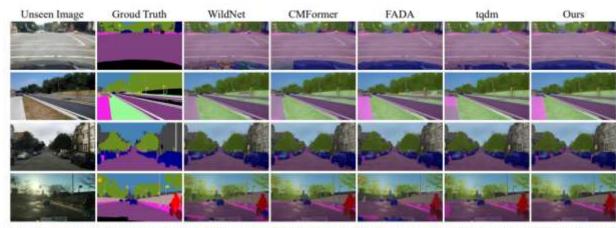


Figure 3: Exemplar segmentation results of existing DGSS methods (WildNet [38], CMFormer [9], FADA [8], tqdm [52]), and the proposed SBGen on unseen target domains.

Thanks for your attention!