

Fully Autonomous Neuromorphic Navigation and Dynamic Obstacle Avoidance

Xiaochen Shang¹, Pengwei Luo¹, Xinning Wang¹, Jiayue Zhao¹, Huilin Ge², Bo Dong³, Xin Yang^{1,*}

¹Key Laboratory of Social Computing and Cognitive Intelligence (Dalian University of Technology), Minstry of Education, ²Jiangsu University of Science and Technology, ³Cephia AI

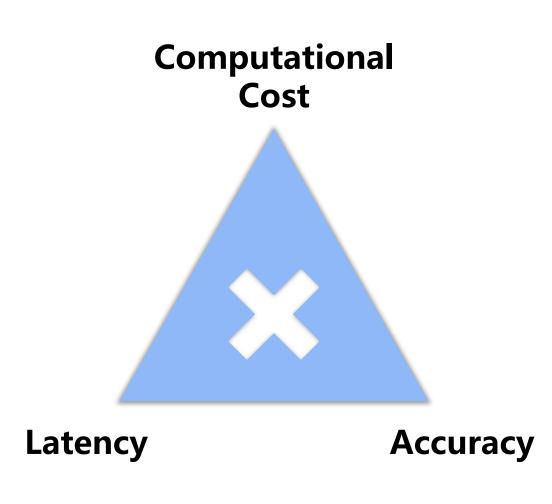
Background: Navigation and Obstacle Avoidance for Quadrotor Systems

The excellent performance of drones heavily relies on external signals.

- Positioning: GPS signals or ground station signals
- Control: Manual control or ground station commands

In signal-denied environments, most solutions are designed for larger platforms.

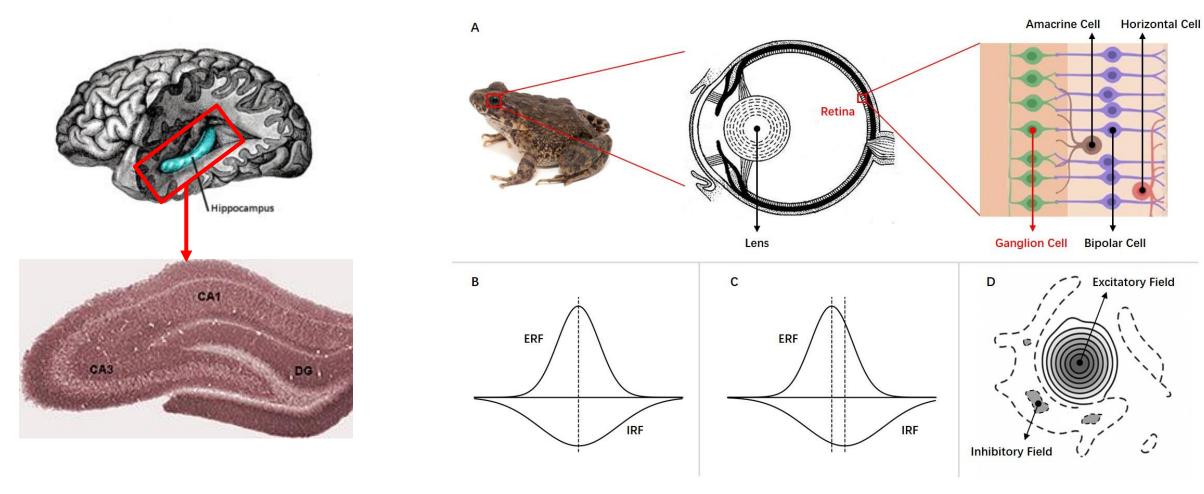
- Li-DAR system: accurate but heavy and powerhungry
- Vision system: lightweight but with excessive computational and memory costs



Background: Neuromorphic Intelligence

Data intelligence driven by model learning		Cognitive bio-inspired neuromorphic intelligence		
×	Massive data, High quality labeling	Few-shot learning, labeling		
×	Low adaptive ability, highly dependency on model.	Unsupervised learning, adaptive ability		
×	High computational costs, Power hungry	 Low computational resources costs, Low Power 		
×	Weak dependency on temporal sequence	Strong temporal sequence dependency, general solution to classical application scenario.		

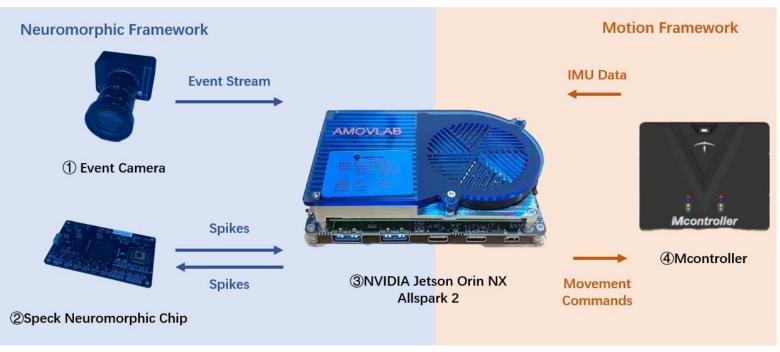
Motivation: Bio-inspired Neuromorphic Solution for Edge Computing Platforms



In nature, organisms (like anurans) can easily navigate and capture fast-moving objects.

Even With Tiny Brains!

Hardware Introduction



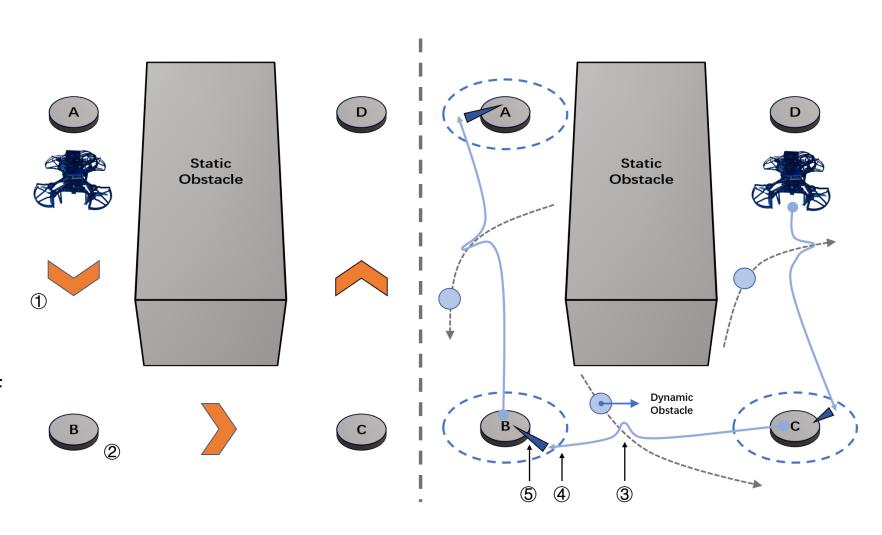
Total weight of the quadrotor: 856 g

Tip-to-tip diameter: 240 mm

Due to the constraints of the Speck chip, the computational process carried out in the neuromorphic chip still relies on an x86-based onboard computer for fundamental support.

Methods: Overview

- ① The quadrotor performs an outbound flight
- ② Periodically records event streams at Snapshot points
- ③ Using Bio-inspired Event RF model to perform dynamic obstacle avoidance
- ④ Continuously calibrates itself in the catchment area
- ⑤ Reaches Snapshot area



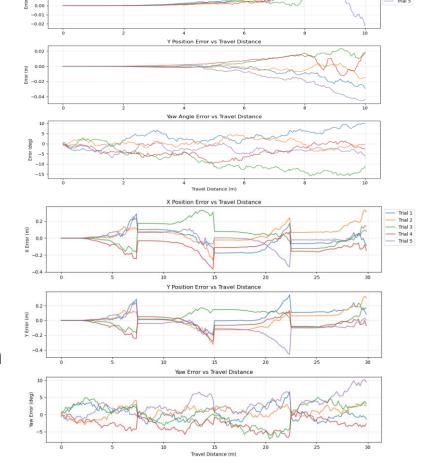
Methods: Event Visual-homing

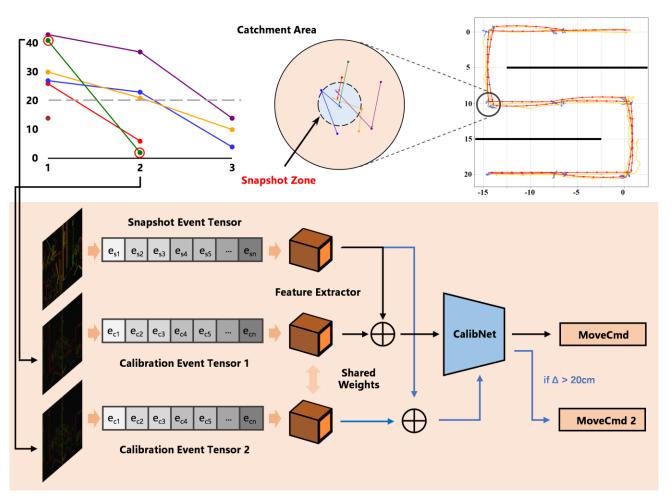
Simplified stack-over-time IMU error:

$$\delta r_N = \delta r_{N,0} + \delta v_{N,0,t} + \frac{1}{2} (g \cdot \delta \Theta_0 + b_{\alpha N}) t^2 + \frac{1}{6} (g \cdot b_{gE}) t^3$$

Error w.r.t. Time

Error w.r.t.
Time
w/
calibration



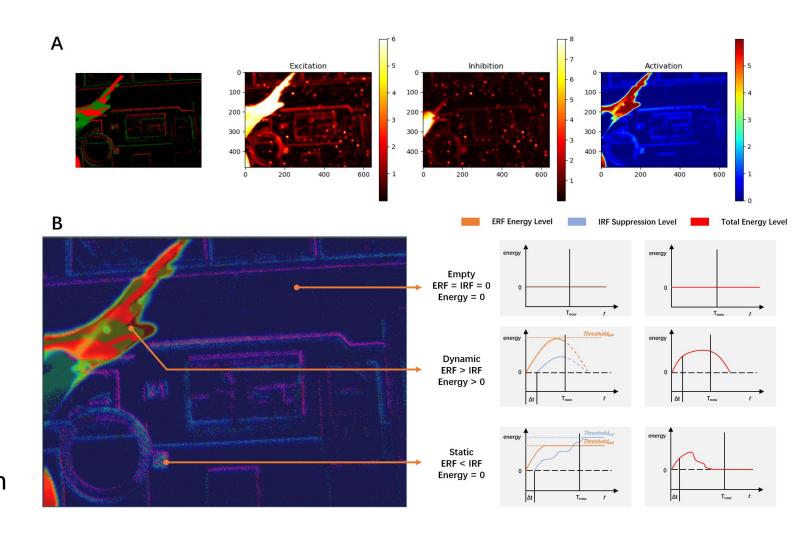


Methods: Bio-inspired Dynamic Obstacle Avoidance

Event RF Model:

The mechanism by which anurans capture highly dynamic insects is the superimposition of **ERF** (excitatory receptive field) and **IRF** (inhibitory receptive field) to **suppress the**perception of static objects and maintain sensitivity only to dynamic ones.

R3 ganglion cells respond to stimuli to **ON-OFF brightness changes**, which are highly identical to event changes

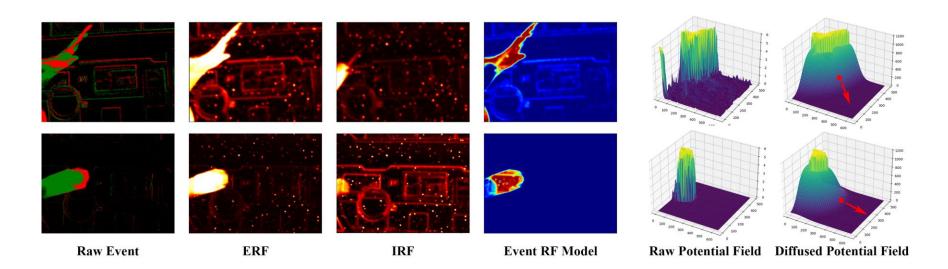


Methods: Bio-inspired Dynamic Obstacle Avoidance

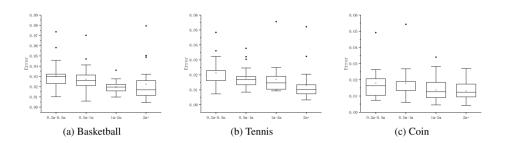
Event RF Model: $F(x, y, e_n, t) = min(A_1K(t, \tau_e)G(x, y, e_n), E_{th}) - min(A_2K(t - \Delta t, \tau_i)G(x, y, e_n), I_{th})$

Time Kernel: $K(t,\tau) = \begin{cases} e^{-t/\tau} & t \ge 0 \\ 0 & t < 0 \end{cases}$

Gaussian Kernel: $G(x,y,e_n) = \frac{1}{2\pi\sigma_x\sigma_y}exp(-\frac{(x-x_n)^2}{2\sigma_x^2} - \frac{(y-y_n)^2}{2\sigma_y^2})$



Experiments: Simulation



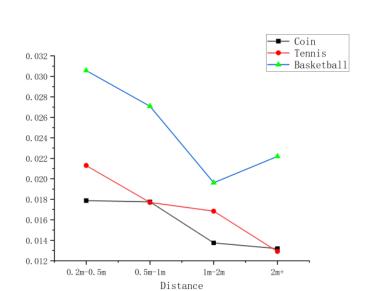
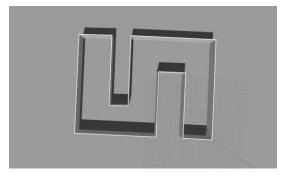


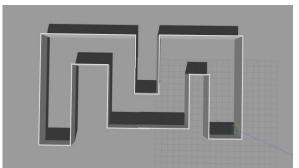
Table 1: Centroid Difference Between RF Model and GT (m)

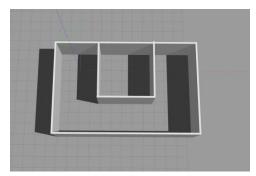
Obstacle Type	Distance	Mean	Median	Std. Dev.	M.A.D	SR
	0.2m - 0.5m	0.0179	0.0164	0.0089	0.0015	94%
Coin-sized	0.5m - 1m	0.0177	0.0134	0.0094	0.0008	92%
Com-sized	1m - 2m	0.0138	0.0126	0.0077	0.0202	90%
	2m+	0.0132	0.0123	0.0053	0.0042	86%
	0.2m - 0.5m	0.0213	0.0228	0.0093	0.0052	92%
Tennis-sized	0.5m - 1m	0.0180	0.0169	0.0072	0.0093	98%
Tennis-sized	1m - 2m	0.0168	0.0146	0.0095	0.0002	100%
	2m+	0.0129	0.0102	0.0103	0.0057	96%
	0.2m - 0.5m	0.0306	0.0297	0.0141	0.0017	84%
Daalaathall airead	0.5m - 1m	0.0271	0.0261	0.0135	0.0026	96%
Basketball-sized	1m - 2m	0.0196	0.0196	0.0059	0.0081	100%
	2m+	0.0222	0.0169	0.0166	0.0109	100%

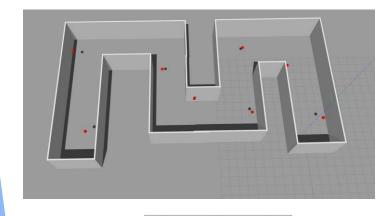
The Event RF Model could accurately capture **events produced by dynamic objects** and generate avoidance movements

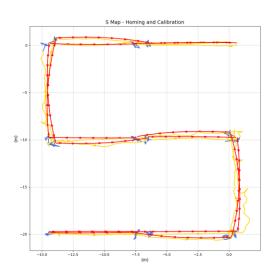
Experiments: Simulation

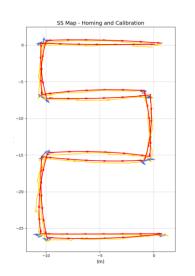


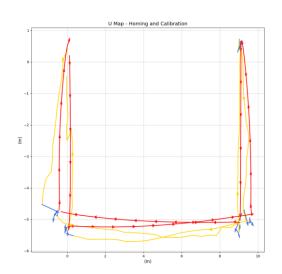


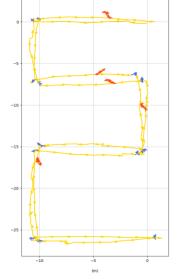




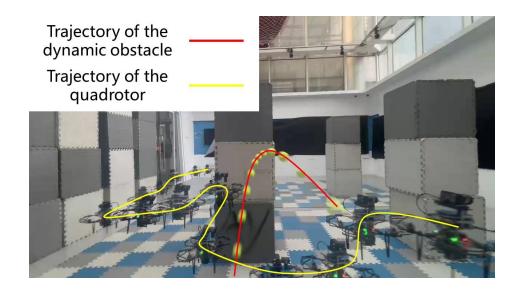






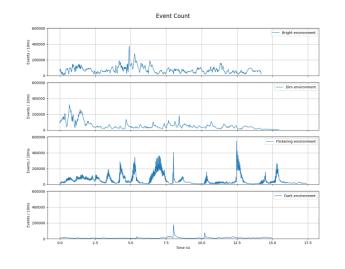


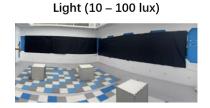
Experiments: Real-world – Indoor Experiment



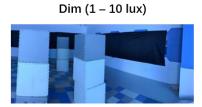
Method	Latency	Pos. Err.	SR
Method 1 64	19.12 ms	0.11 m	96.3
Method 2 [13]	39.49 ms	0.11 m	89.1
Method 3 [26]	3.56 ms	0.09 m	86.7
Method 4 (GTX 4090) [65]	14 ms	LiDAR	95.75
Method 4 (onboard) [65]	27 ms	LiDAR	86.5
Ours	2.34 ms	0.02 m	94.5

Quantitative Evaluation











Flight Arena in Various Light Conditions

Experiments: Energy Consumption and Computational Cost

Device	Idle Power (W)	Running Power (W)	Delta (W)	Latency (ms)
Speck	4.2×10^{-4}	1.56×10^{-2}	1.518×10^{-2}	-
Jetson Orin NX + Speck (10W)	3.68	4.64	0.96	2.3
Jetson Orin NX + SNN (10W) without Speck	3.71	9.52	5.81	6.8
Jetson Orin NX + ANN (10W)	3.72	-	-	-
Jetson Orin NX + ANN (25W)	3.72	22.4	18.68	12.5

Step	μ [ms]	σ [ms]	Perc. [%]
Event RF Model	0.64	0.22	27.35%
Energy Decay Update	1.09	0.34	46.58%
Potential Field	0.61	0.03	26.07%
Total	2.34	0.51	100%

Comparisons are made between the **Speck neuromorphic chip** and an **Nvidia Jetson Orin NX** for running the whole pipeline. Due to the device limit, **only SNN is performed on the Speck neuromorphic chip**, while both SNN and equivalent ANN are performed on the Nvidia Jetson Orin NX platform. The SNN ran in hardware on Speck and in software on Jetson Orin NX.

95% energy reduction of computation (down to 5% of original levels) in the neuromorphic structure and the total system energy consumption decreases to 21% of baseline values.

Conclusion

Our contributions to the community include:

- A fully neuromorphic framework enabling tiny UAVs to rely solely on onboard computation and sensing for real-time navigation and dynamic obstacle avoidance.
- A bio-inspired approach enabling tiny UAVs to accurately avoid dynamic obstacles at speeds up to 10 m/s with a latency of 2.3 milliseconds.
- An open-sourced monocular event-based pose correction dataset with over 50,234 paired and labeled event streams. (not mentioned in this slide due to time limit)

Code

Xiaochen Shang's Homepage

