

Towards Minimizing Feature Drift in Model Merging:Layer-wise Task Vector Fusion for Adaptive Knowledge Integration

Wenju Sun¹, Qingyong Li¹, Wen Wang¹, Liu Yang¹, Yangli-ao Geng¹, Boyang Li²

¹Beijing Jiaotong University ²Nanyang Technological University

Presented by: Wenju Sun

The Thirty-ninth Annual Conference on Neural Information Processing Systems

Content

Introduction

- Model Merging
- Baseline: Task Arithmetic

Method

- Knowledge Conflict
- LOT Merging

Experiment

Model Merging

Definition

Consider a pretrained model W_{pre} and a set of finetuned models $\{W_i\}_{i=1}^k$ with corresponding downstream tasks $\{D_i\}_{i=1}^k$.

Our goal is to merge all K models into a unified model W_{mtl} without redundant retraining. The unified model W_{mtl} should perform well on all downstream tasks.

Baseline: Task Arithmetic

Task Arithmetic: Considering a pretrained model W_{pre} and a set of finetuned models $\{W_i\}_{i=1}^k$ with corresponding downstream tasks $\{D_i\}_{i=1}^k$, the task vectors $\{T_i\}_{i=1}^k$ are defined as $T_i = W_i - W_0$.

Task vectors can be applied to W_{pre} with a scaling term λ , i.e., $W_{mtl} = W_{pre} + \alpha \sum_i T_i$, which allows to control the behavior of the edited model via simple arithmetic operations on task vectors.

Knowledge Conflict

Definition (for task arithmetic): the increase in task-specific loss incurred by merging.

For a given task k, associated with the loss function $\mathcal{L}_k(.)$, the knowledge conflict during merging is quantified as:

$$\Delta \mathcal{L}_k = \mathcal{L}_k(W_{mtl}) - \mathcal{L}_k(W_k)$$

Isolating Knowledge Conflict

Theorem 4.4 (An Upper Bound on Knowledge Conflict):

Suppose that within the range of model merging, the function of layer I is γ_l -Lipschitz continuous with respect to its input, and the loss function L is β -Lipschitz continuous with respect to the final output of the network. Then, the knowledge conflict follows:

$$|\Delta \mathcal{L}_k| \le \beta \sum_{l=1}^L \left(\prod_{m=l+1}^L \gamma_m \right) \|\Delta f_k^l\|$$

Objective

We propose to mitigate knowledge conflict by minimizing the **feature drift** for each layer:

$$T^{l^*} = \underset{T^l}{\operatorname{arg\,min}} \sum_{k=1}^K \|\Delta f_k^l\|^2 = \underset{T^l}{\operatorname{arg\,min}} \sum_{k=1}^K \|f_k^l(W_{\operatorname{pre}} + T^l) - f_k^l(W_k)\|^2$$

For Linear Weights

Suppose $W^l \in \mathbb{R}^{d_l \times d_{l+1}}$ corresponds to the weight of a linear layer, which transforms features through matrix multiplication $f_k^l(W) = X_k^l W^l$ with pre-collected input X_k^l . The objective becomes:

$$\begin{split} T^{l^{\star}} &= \arg\min_{T^{l}} \sum_{k=1}^{K} \|X_{k}^{l}(W_{\text{pre}}^{l} + T^{l}) - X_{k}^{l}(W_{k}^{l})\|_{F}^{2} \\ &= \arg\min_{T^{l}} \sum_{k=1}^{K} \|X_{k}^{l}(T^{l} - T_{k}^{l})\|_{F}^{2} = \arg\min_{T^{l}} \sum_{k=1}^{K} \operatorname{trace}((T^{l} - T_{k}^{l})^{\top} X_{k}^{l}^{\top} X_{k}^{l} (T^{l} - T_{k}^{l})) \end{split}$$

This defines a convex quadratic optimization problem. Consequently, the optimal solution T^{l^*} can be derived in closed form as follows:

$$T^{l^{\star}} = \left(\sum_{k} X_{k}^{l} X_{k}^{l}\right)^{\dagger} \sum_{k} X_{k}^{l} X_{k}^{l} T_{k}^{l}$$

Analysis: Why $T^{l^*} = \left(\sum_k X_k^{l^\top} X_k^l\right)^{\dagger} \sum_k X_k^{l^\top} X_k^l T_k^l$ Work?

Consider SVD on input features $X_k^l = U_k^l \Sigma_k^l V_k^{l^{\top}}$.

Ideal case, where for any $k \neq j$, $V_k^{l^{\top}}V_j^l = 0$. Then, T^{l^*} simplifies to:

$$T_{\text{ideal}}^{l\star} = \left(\sum_{k} V_{k}^{l} \Sigma_{k}^{l}^{2} V_{k}^{l^{\top}}\right)^{\dagger} \sum_{k} V_{k}^{l} \Sigma_{k}^{l}^{2} V_{k}^{l^{\top}} T_{k}^{l} = \sum_{k} \left(V_{k}^{l} \Sigma_{k}^{l}^{2} V_{k}^{l^{\top}}\right)^{\dagger} \sum_{k} V_{k}^{l} \Sigma_{k}^{l}^{2} V_{k}^{l^{\top}} T_{k}^{l} = \sum_{k} V_{k}^{l} V_{k}^{l^{\top}} T_{k}^{l}.$$

There is no conflict in this case

$$\sum_{k=1}^{K} \|X_{k}^{l} (T_{ideal}^{l^{\star}} - T_{k}^{l})\|_{F}^{2} = \sum_{k=1}^{K} \|U_{k}^{l} \Sigma_{k}^{l} V_{k}^{l^{\top}} (\sum_{j} V_{j}^{l} V_{j}^{l^{\top}} T_{j}^{l} - T_{k}^{l})\|_{F}^{2}$$

$$= \sum_{k=1}^{K} \|U_{k}^{l} \Sigma_{k}^{l} V_{k}^{l^{\top}} V_{k}^{l} V_{k}^{l^{\top}} T_{k}^{l} - U_{k}^{l} \Sigma_{k}^{l} V_{k}^{l^{\top}} T_{k}^{l}\|_{F}^{2} = 0$$

Analysis: Why $T^{l^*} = \left(\sum_k X_k^{l^\top} X_k^l\right)^\top \sum_k X_k^{l^\top} X_k^l T_k^l$ Work?

Consider SVD on input features $X_k^l = U_k^l \Sigma_k^l V_k^{l^{-1}}$.

Worst case, where for any k, $V_k^l = V^l$. Then, T^{l^*} simplifies to:

$${T^l}_{\text{worst}}^{\star} = \left(\sum_k {V^l}{\Sigma_k^l}^2 {V^l}^{\top}\right)^{\dagger} \sum_k {V^l}{\Sigma_k^l}^2 {V^l}^{\top} T_k^l$$

$$= V^l \left(\sum_k {\Sigma_k^l}^2\right)^\dagger V^{l^\top} \sum_k V^l {\Sigma_k^l}^2 V^{l^\top} T_k^l = \sum_k \left(V^l \underbrace{\left(\sum_k {\Sigma_k^l}^2\right)^\dagger {\Sigma_k^l}^2 V^{l^\top} T_k^l}_{\text{Normalized Weight}}\right)^\dagger$$

Experiments

	LOTINION		PEGEGGA	T. G. T.	OT 1777	C T C D D		TO 2000	1	
Method	SUN397	Cars	RESISC45	EuroSAT	SVHN	GTSRB	MNIST	DTD	Avg Acc	#best
Basic baseline methods										
Pre-trained	62.3	59.7	60.7	45.5	31.4	32.6	48.5	43.8	48.0	-
Individual	75.3	77.7	96.1	99.7	97.5	98.7	99.7	79.4	90.5	-
Traditional MTL	73.9	74.4	93.9	98.2	95.8	98.9	99.5	77.9	88.9	-
Training-free methods										
Weight Averaging	65.3	63.4	71.4	71.7	64.2	52.8	87.5	50.1	65.8	0
Fisher Merging	68.6	69.2	70.7	66.4	72.9	51.1	87.9	59.9	68.3	2
RegMean	65.3	63.5	75.6	78.6	78.1	67.4	93.7	52.0	71.8	0
Task Arithmetic	55.2	54.9	66.7	78.9	80.2	69.7	97.3	50.4	69.1	0
Ties-Merging	59.8	58.6	70.7	79.7	86.2	72.1	98.3	54.2	72.4	0
TATR	62.7	59.3	72.3	82.3	80.5	72.6	97.0	55.4	72.8	0
Ties-Merging & TATR	66.3	65.9	75.9	79.4	79.9	68.1	96.2	54.8	73.3	0
Consensus Merging	65.7	63.6	76.5	77.2	81.7	70.3	97.0	57.1	73.6	0
AWD Merging	63.5	61.9	72.6	84.9	85.1	79.1	98.1	56.7	75.2	0
PCB Merging	63.8	62.0	77.1	80.6	87.5	78.5	98.7	58.4	75.8	1
CAT Merging	68.1	65.4	80.5	89.5	85.5	78.5	98.6	60.7	78.3	0
LOT Merging (ours)	67.7	67.5	85.7	94.9	93.4	89.8	98.7	63.6	82.7	6

Experiments

Method	SUN397	Cars	RESISC45	EuroSAT	SVHN	GTSRB	MNIST	DTD	Avg Acc	#best
Basic baseline methods										
Pre-trained	66.8	77.7	71.0	59.9	58.4	50.5	76.3	55.3	64.5	-
Individual	82.3	92.4	97.4	100.0	98.1	99.2	99.7	84.1	94.2	-
Traditional MTL	80.8	90.6	96.3	96.3	97.6	99.1	99.6	84.4	93.5	-
Training-free methods										
Weight Averaging	72.1	81.6	82.6	91.9	78.2	70.7	97.1	62.8	79.6	0
Fisher Merging	69.2	88.6	87.5	93.5	80.6	74.8	93.3	70.0	82.2	1
RegMean	73.3	81.8	86.1	97.0	88.0	84.2	98.5	60.8	83.7	0
Task Arithmetic	73.9	82.1	86.6	94.1	87.9	86.7	98.9	65.6	84.5	0
Ties-Merging	76.5	85.0	89.3	95.7	90.3	83.3	99.0	68.8	86.0	0
TATR	74.6	83.7	87.6	93.7	88.6	88.1	99.0	66.8	85.3	0
Ties-Merging & TATR	76.3	85.3	88.8	94.4	90.8	88.7	99.2	68.8	86.5	0
Consensus Merging	75.0	84.3	89.4	95.6	88.3	82.4	98.9	68.0	85.2	0
AWD Merging	76.2	85.4	88.7	96.1	92.4	92.3	99.3	69.4	87.5	0
PCB Merging	76.2	86.0	89.6	95.9	89.9	92.3	99.2	71.4	87.6	0
CAT Merging	78.7	88.5	91.1	96.3	91.3	95.7	99.4	75.7	89.6	2
LOT Merging (ours)	76.7	88.6	91.7	98.7	97.1	95.7	99.5	76.4	90.5	7

Experiments

Method	COCO Caption	Flickr30k Caption	Textcaps	OKVQA	TextVQA	ScienceQA	#best
Metric	CIDEr	CIDEr	CIDEr	Accuracy	Accuracy	Accuracy	
Pre-trained ·	0.07	0.03	0.05	42.80	21.08	40.50	-
Individual	1.17	0.65	0.65	50.84	29.79	76.89	-
Task Arithmetic	0.86	0.50	0.39	17.71	0.49	40.10	0
Ties-Merging	0.53	0.27	0.22	27.95	0.57	40.35	0
TATR	0.46	0.31	0.21	28.30	14.74	42.98	0
PCB Merging	0.71	0.52	0.30	36.04	1.88	43.01	0
CAT Merging	0.91	0.53	0.36	44.07	19.69	46.36	2
LOT Merging (ours)	0.91	0.54	0.44	38.35	20.82	48.24	5

THANKS FOR WATCHING

Minimizing Feature Drift in Model Merging:Layerwise Task Vector Fusion for Adaptive Knowledge Integration

Presented by: Wenju Sun

