

IBM Research

Quantum Doubly Stochastic Transformers

Spotlight

Advances in Neural Information Processing Systems (NeurIPS) 2025

Jannis Born · Filip Skogh · Kahn Rhrissorrakrai · Filippo Utro · Nico Wagner · Aleksandros Sobczyk

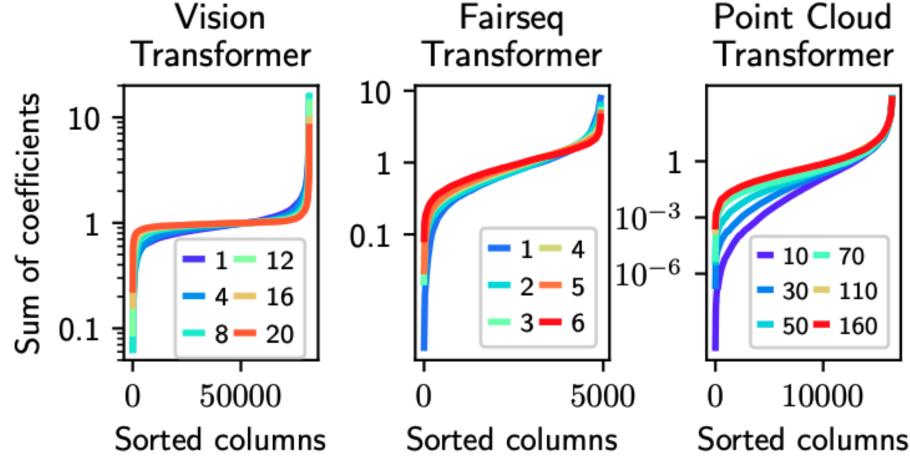
Right-stochastic attention can destabilize Transformer training

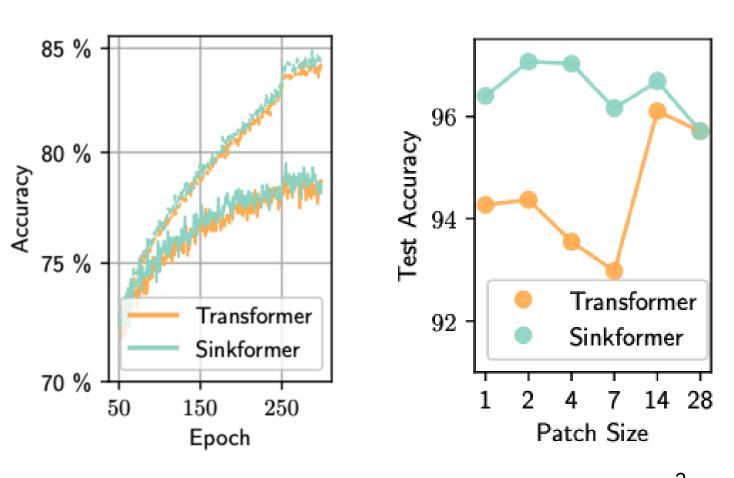
Entropy collapse (ICML 2023), Rank collapse (NeurIPS 2022), Token uniformity (ICML 2021), Eureka Moments (ICML 2024)

> Attention converges to doubly stochastic matrices as training progresses

> Sinkformer - Doubly stochastic attention via Sinkhorn's Algorithm

> Sinkformer consistently improves performance across domains

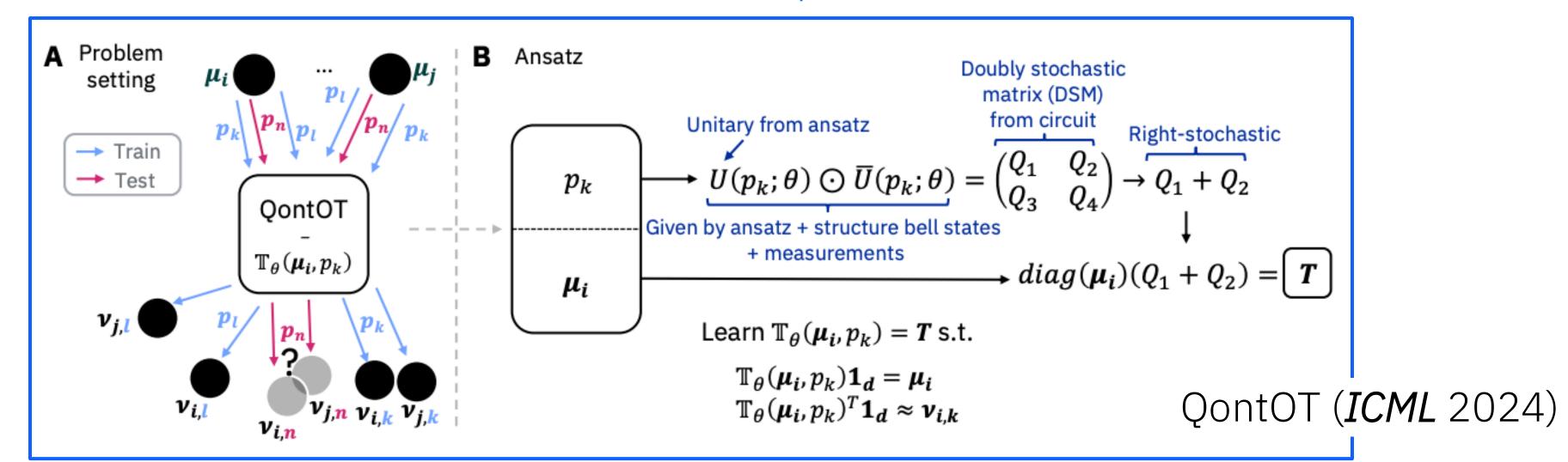




Sinkformer (2022, AISTATS)

Linking attention with quantum computing

- > Sinkhorn's algorithm is approximative, non-parametric, iterative and not gradient-friendly
- \triangleright Doubly stochastic matrices (DSM) can be obtained with quantum circuits (. U \odot \overline{U} is a DSM)



- > QontOT Amortized optimization of Optimal Transport maps through a novel variational circuit
- \triangleright Requires only $\approx 4 \log_2(n)$ qubits and lacks a classical analogue

Quantum Doubly Stochastic Transformer (QDSFormer)

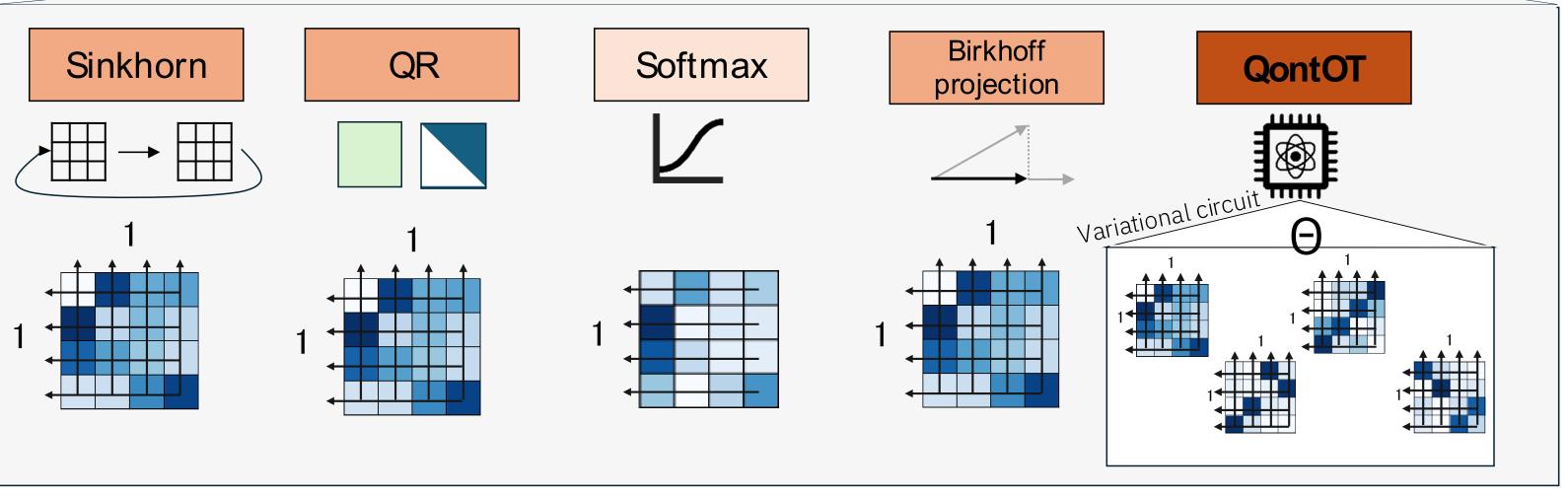
Scaled dot-product attention

Replace softmax in Transformer attention with QontOT

atterition with quitter	Temperature					Attention			
Compare QDSFormer al	Q	Matmul		\sqrt{d}_k $ au$		Operator		Matmul	
operators		K			$\sigma(QK)$				
Sinkhorn Project	QR QontOT						Pirkho	ff	

	Sinkhorn	Project	QR	QontOT
Exact			✓	✓
Different.			✓	>
Parametric				

Focus on small-scale VisionTransformers (ViT)

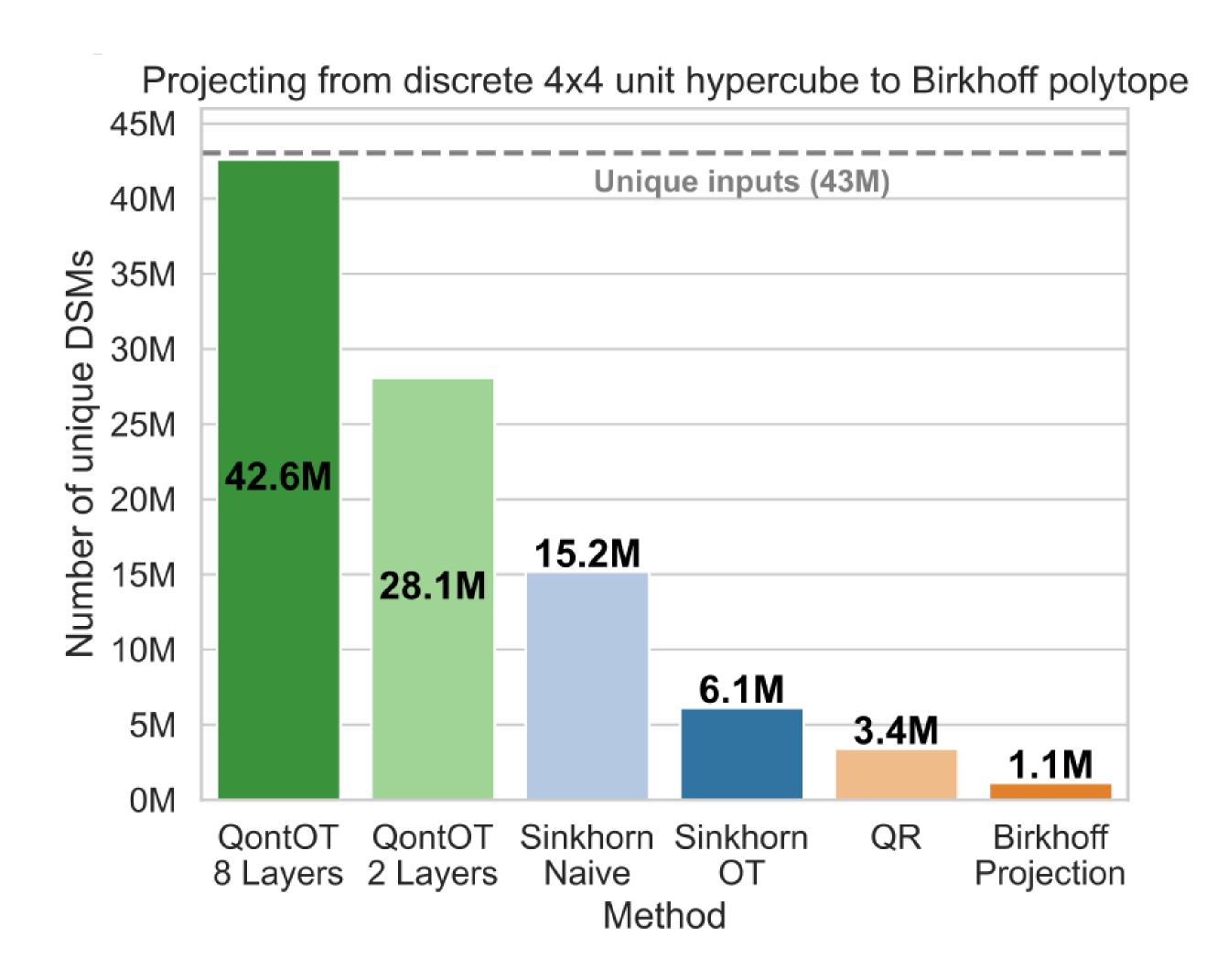


Expressivity of different doubly stochastic activation functions

Brute-force analysis over discretized grid of 4x4 unit hypercube

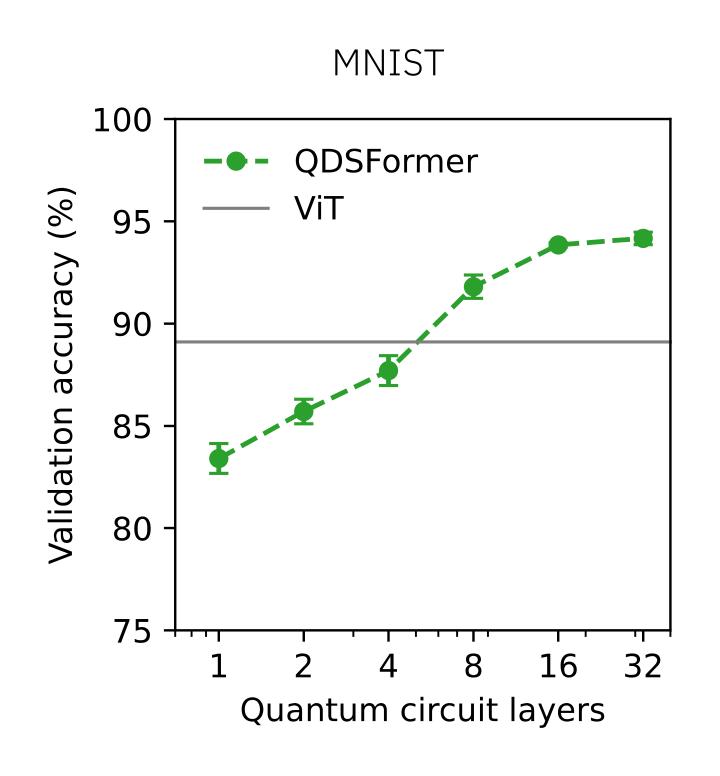
> Ideal activation function is injective

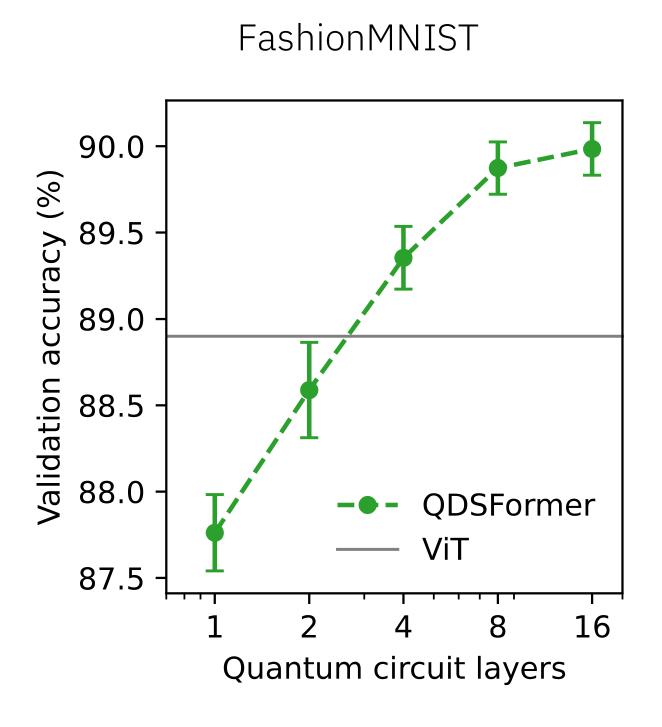
QontOT produces more unique DSMs (even with fixed, random parametrization!)



Quantum Doubly Stochastic Vision Transformer

In simulation, even with few circuit layers a Vision Transformer can be outperformed





- > Circuit is used statically (no online training)
- > Circuit limits DSM sizes to powers of 2

Quantum Doubly Stochastic Vision Transformer

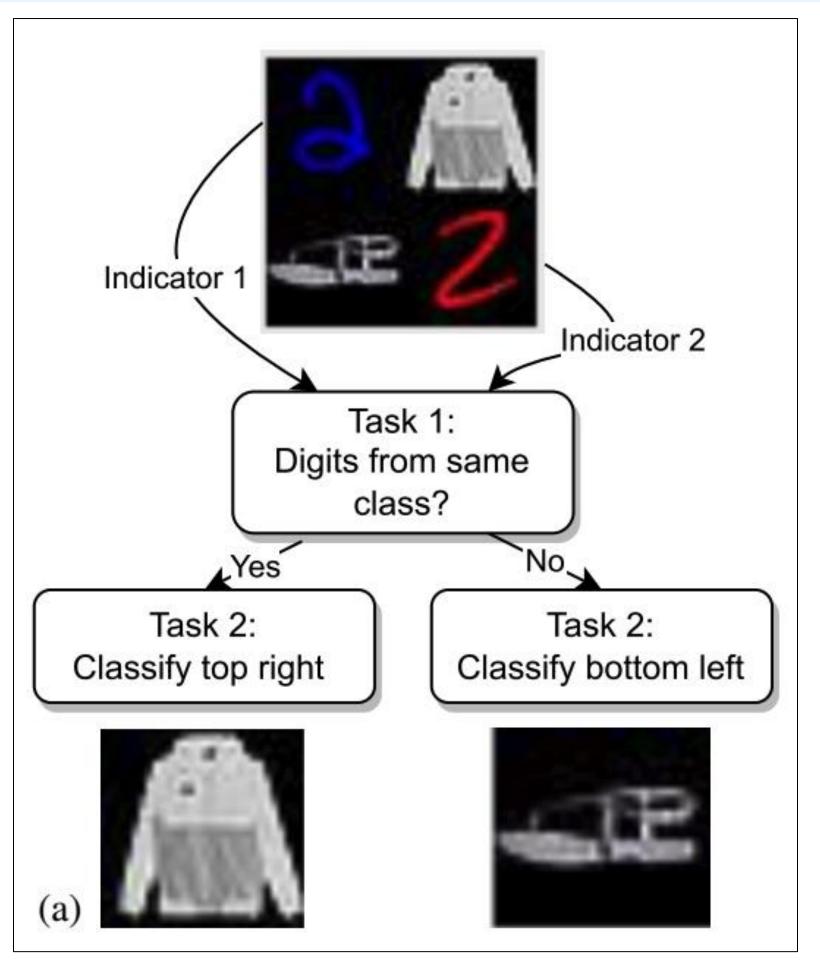
MedMNIST benchmark

- > QDSFormer best model for 5/7 datasets
- No other doubly stochastic transformer improves over standard ViT
- > Up to 240k samples, up to 200k model parameters
- > Small images (28x28)

Table 3. Test accuracy for different MedMNIST datasets across five attention types in a 2-layer ViT. QontOT uses 16 circuit layers.

MedMNIST dataset	Softmax	$\mathbf{Softmax}_{\sigma^2}$	QR	QontOT	Sinkhorn
OCT	64.4 _{±1.6}	$43.6_{\pm 3.0}$	$62.5_{\pm 0.9}$	$61.6_{\pm 0.6}$	$55.1_{\pm 5.2}$
Pneumonia	$84.2_{\pm 0.8}$	$84.7_{\pm 2.0}$	$84.3_{\pm 0.7}$	86.1 $_{\pm 1.0}$	$83.0_{\pm 1.5}$
Tissue	$60.0_{\pm 0.2}$	$49.4_{\pm 1.2}$	$59.0_{\pm 0.1}$	60.6 $_{\pm0.1}$	$56.9_{\pm 2.0}$
OrganA	$78.8_{\pm 0.5}$	$73.6_{\pm 1.7}$	$78.4_{\pm 0.6}$	81.2 $_{\pm 0.3}$	$77.0_{\pm 2.5}$
OrganC	$79.8_{\pm 0.5}$	$71.7_{\pm 7.3}$	$79.6_{\pm 0.3}$	82.7 $_{\pm 0.5}$	$79.7_{\pm 1.0}$
OrganS	$64.4_{\pm 0.6}$	$59.3_{\pm 0.9}$	$62.6_{\pm 0.8}$	68.1 $_{\pm 0.6}$	$63.5_{\pm 0.9}$
Breast	$79.6_{\pm 2.0}$	$78.2_{\pm 2.2}$	$\textbf{81.3}_{\pm 2.9}$	$80.0_{\pm1.1}$	$80.1_{\pm 0.8}$
Mean	73.0	65.8	72.5	74.3	70.8

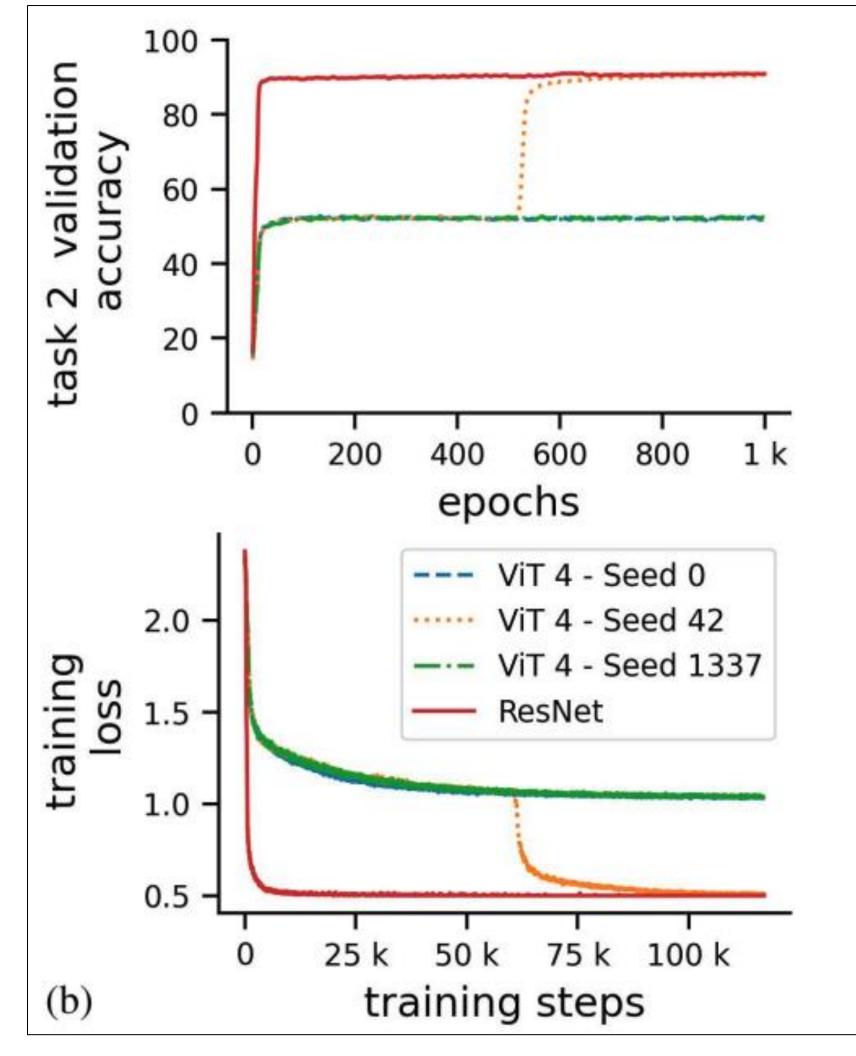
QDSFormer on a compositional vision task



Hofmann et al. (2024, ICML)

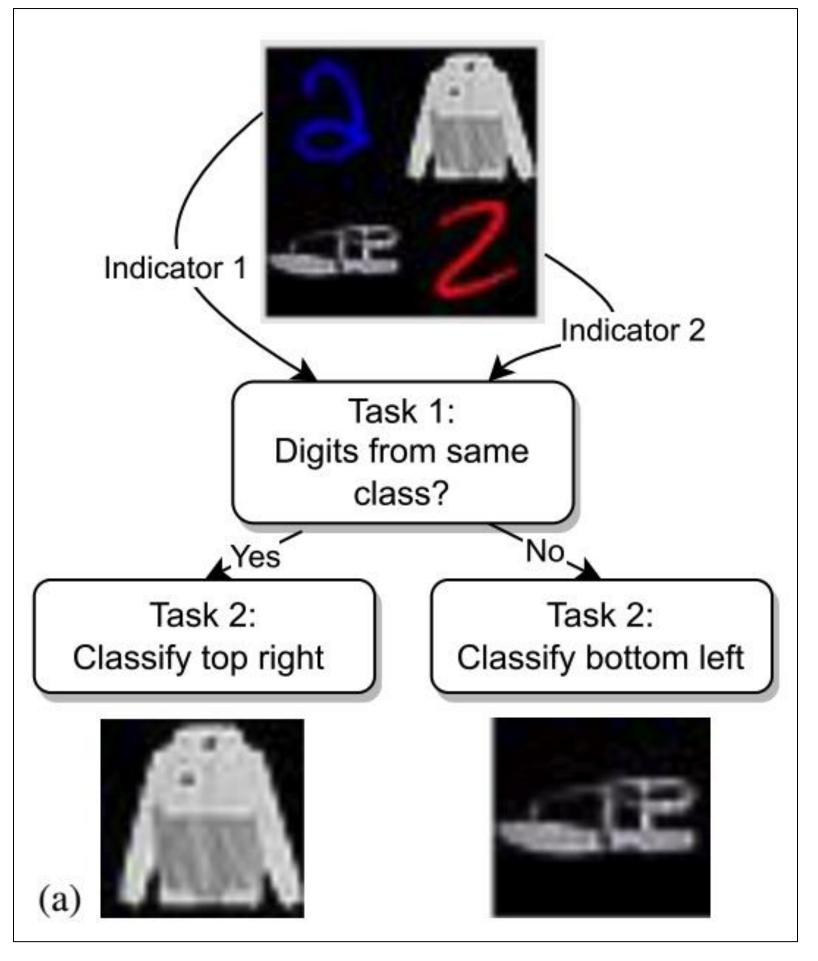
Classical ViTs are unstable to train –
 especially in compositional tasks

➤ More stable training → Earlier Eureka
Moment



Hofmann et al. (2024, *ICML*)

QDSFormer on a compositional vision task

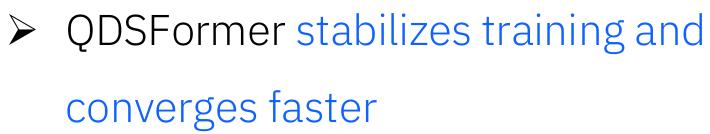


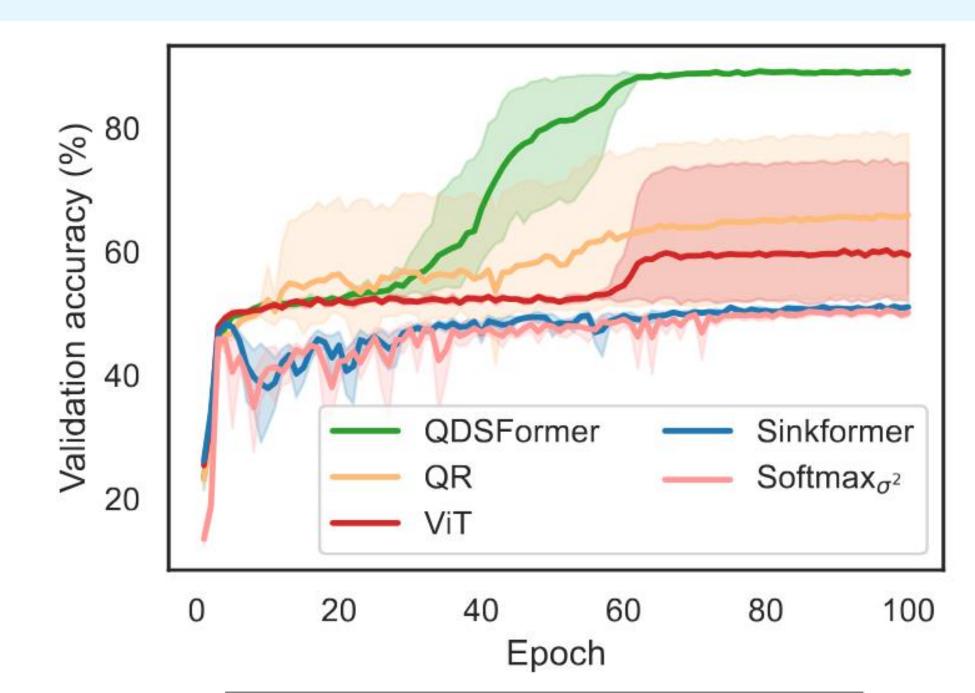
Hofmann et al. (2024, ICML)

Classical ViTs are unstable to train –
 especially in compositional tasks

➤ More stable training → Earlier Eureka

Moment





Model	Accuracy
Softmax	$61.1_{\pm 14.6}$
$Softmax_{\sigma^2}$	$51.0_{\pm 0.52}$
Sinkhorn	$51.6_{\pm 0.24}$
QR	$66.4_{\pm 15.6}$
QDSFormer	$89.4_{\pm 0.09}$

Quantum hardware experiments with 1-layer QDSFormer

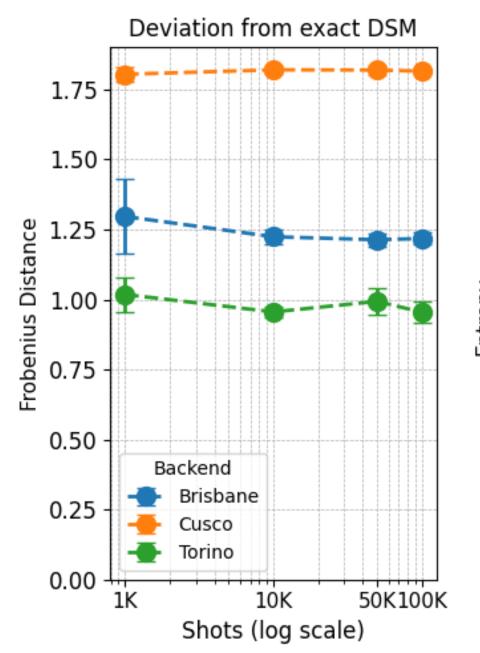
Compare exact DSM to

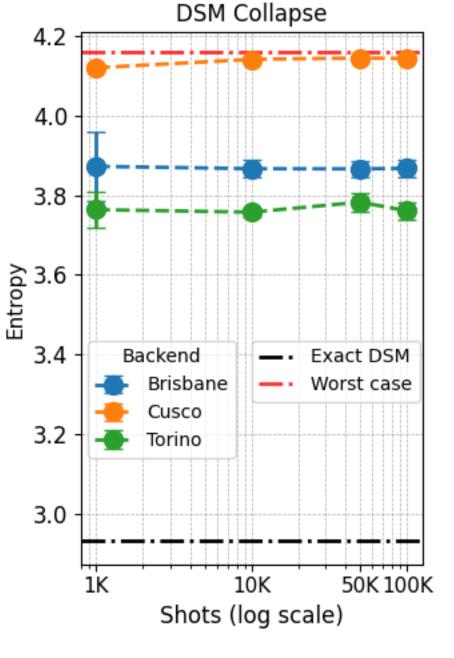
- Per device: 10 runs with 1k, 10k, 50k & 100k shots
- Calculate the Frobenius Distance between HW DSM and exact DSM

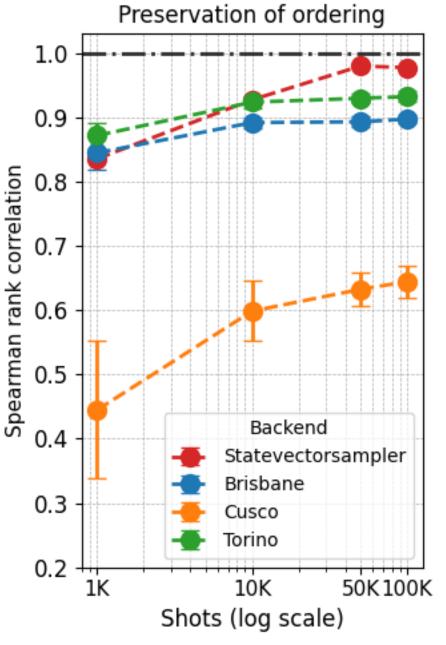
Error mitigation:

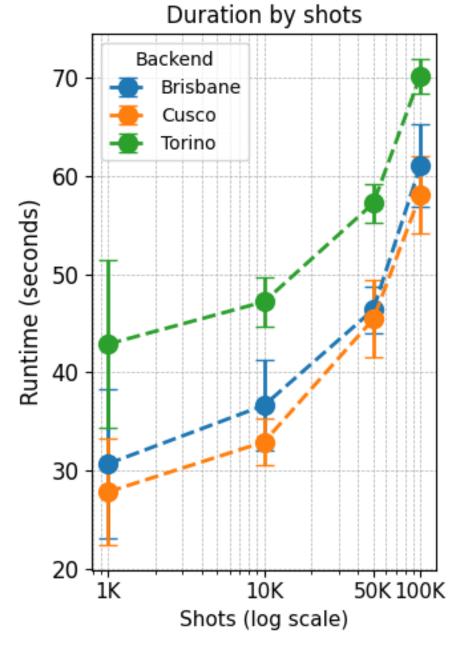
- Dynamical decoupling
- Pauli twirling
- Birkhoff projection Transpilation opt. level 1*

	1 Layer	8 Layer
Qubits	14	14
Ansatz parameter	69	405
Transp. 2q-depth	15	38
Transp. 2q-op_count	52	166







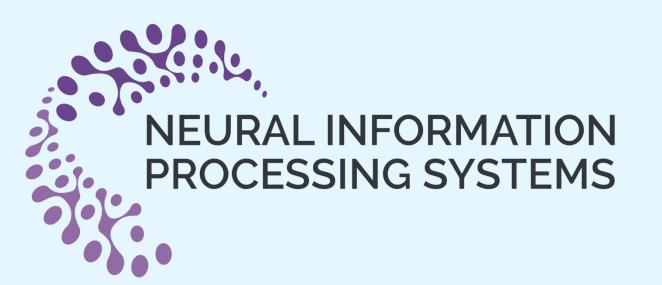


Hardware specs:

Torino: Heron R1 (133 qubits, EPLG: 1.3%)

Brisbane: Eagle R3 (127 qubits, EPLG: 2.2%)

Cusco: Eagle R3 (127 qubits, EPLG: 6.8%)



IBM Research

Thank you for your attention!

Visit our spotlight poster:

@SanDiego: Wed 3.12. 4:30 p.m. CST — 7:30 p.m. (Hall C/D/E).

By Filip & Kahn

@Copenhagen: EurIPS Wed 3.12 to Fri 5.12.

By Jannis

1. NTL consistently improves performance on mathematical tasks

Table 1: Validation accuracy of L-layered ViT on FashionMNIST and MNIST for different attention methods. QontOT uses 16 circuit layers. Mean/std computed from 5 trainings.

FashionMNIST				MNIST						
L	Softmax	$\mathbf{Softmax}_{\sigma^2}$	QR	QontOT	Sinkhorn	Softmax	$\mathbf{Softmax}_{\sigma^2}$	QR	QontOT	Sinkhorn
1	$86.5_{\pm 0.2}$	$75.3_{\pm 4.6}$	87.1 $_{\pm 0.3}$	$85.6_{\pm0.1}$	$84.2_{\pm 3.6}$	$89.1_{\pm 12.5}$	$66.7_{\pm 22.5}$	96.6 _{±0.1}	$93.9_{\pm 0.1}$	$94.3_{\pm 2.0}$
2	$88.9_{\pm 0.1}$	$84.6{\scriptstyle\pm2.1}$	$89.3_{\pm 0.1}$	90.0 $_{\pm 0.2}$	$89.1_{\pm0.7}$	$98.1_{\pm 0.3}$	$93.0_{\pm 4.6}$	$98.3_{\pm 0.1}$	98.4 $_{\pm 0.1}$	$98.2_{\pm 0.3}$
3	$89.4_{\pm 0.3}$	$86.3_{\pm 2.7}$	$89.4_{\pm 0.1}$	90.3 $_{\pm 0.1}$	$89.4_{\pm 0.8}$	$98.6_{\pm 0.1}$	$97.7_{\pm 0.7}$			— • • –
4	$89.7_{\pm 0.3}$	$87.1_{\pm 1.2}$	$89.5_{\pm 0.1}$	90.3 $_{\pm 0.1}$	$89.1_{\pm1.1}$	98.8 $_{\pm 0.1}$	$97.9_{\pm 0.7}$	$98.7_{\pm 0.1}$	98.8 ± 0.1	$97.9_{\pm 1.6}$

From NTL to general world knowledge

Training with cross entropy
=
all mistakes are equally bad

 Observation: NTL only requires a pairwise distance matrix between a subset of vocabulary tokens

- Frequently violated:
 - Image recognition
 - molecule or protein generation
 - numbers or units in text
 - Spherical coordinates
 - Algorithmic design (e.g., trigonometric functions)

 Idea: Leverage NTL to induce domain-specific knowledge when training your LM

What if distributions are not 1D?

- Beyond 1D, Wasserstein Distance is not differentiable
 - → Entropic regularization
- Sinkhorn's iterative matrix balancing algorithm
 - Slow and poor gradient flow
- Result: Wasserstein Distance rarely used in ML

Novel strategies:

- Quantum computing
- Tensor Networks

