An Efficient Local Search Approach for Polarized Community Discovery in Signed Networks

Linus Aronsson, Morteza Haghir Chehreghani

Chalmers University of Technology and University of Gothenburg

October 19, 2025

Problem and Motivation

- **Signed network**: G = (V, E) with adjacency matrix A, where $A_{ii} \in \{-1, 0, +1\}$.
- **Goal**: Polarized Community Discovery (PCD). Find k non-neutral groups S_1, \ldots, S_k (with large similarity inside each cluster, and small similarity between each pair of clusters) and a neutral set S_0 .
- Use cases: Analyzing social systems to detect and mitigate polarization, echo chambers and spread of misinformation.

PCD Objective

Polarity (common PCD objective):

$$\max_{S_0,S_1,\dots,S_k} \frac{\sum_{m=1}^k \sum_{i,j \in S_m} A_{ij} - \frac{1}{k-1} \sum_{m,p=1}^k \sum_{i \in S_m} \sum_{j \in S_p} A_{ij}}{\sum_{m=1}^k |S_m|}$$

• **Issue with polarity**: often leads to solutions with multiple empty clusters (large cluster size imbalance).

Contributions

- New PCD objective that encourages (reasonably) balanced non-neutral clusters.
- First scalable local search algorithm for PCD (motivated by success of local search algorithms for correlation clustering and other machine learning problems).
- Prove a linear convergence rate by connecting local search to block-coordinate Frank-Wolfe (FW) optimization (possible due to the structure of our proposed PCD objective).
- Our proposed method outperforms baselines on synthetic and real-world datasets.

Proposed PCD Objective

Problem (k-PCD)

$$\max_{S_0, S_1, \dots, S_k} \sum_{m=1}^k \sum_{i, j \in S_m} A_{ij} - \alpha \sum_{\substack{m, p=1 \\ m \neq p}}^k \sum_{i \in S_m} \sum_{j \in S_p} A_{ij} - \beta \sum_{m=1}^k |S_m|^2.$$

- $\alpha = \frac{1}{k-1}$ balances intra vs. inter terms.
- $\beta > 0$ regulates size and discourages imbalance.
- Theorem 1: k-PCD is NP hard.

Local Search and Block-Coordinate FW

Local Search (discrete)

Local Search for PCD

- 1: Initialize S_0, S_1, \ldots, S_k
- 2: repeat
- 3: pick object $i \in V$ randomly
- 4: move i to cluster S_m , $m \in \{0, ..., k\}$, that maximally increases the objective
- 5: until no improving move

Block-coordinate Frank-Wolfe (FW) (soft cluster membership)

Block-Coordinate FW

- 1: Soft memberships $x_i \in \Delta_{k+1}$ for all i
- 2: **for** t = 0, 1, ..., T **do**
- 3: pick block i
- 4: $s_i \leftarrow \arg\max_{u \in \Delta_{k+1}} u^\top \nabla_i f(x)$
- 5: $x_i \leftarrow (1 \gamma)x_i + \gamma s_i$

 $\triangleright \gamma$ via line-search

6: end for

Equivalence and Convergence

Theorem 2 (informal)

The simple local search algorithm is equivalent to the block-coordinate FW algorithm.

Theorem 3 (informal)

The convergence rate of the local search algorithm is O(1/t).

Note: For general non-concave FW the known rate is $O(1/\sqrt{t})$. Due to the structure of our objective, we prove the convergence rate O(1/t), which is significantly better.

Local Search (efficient)

Local Search for PCD (efficient)

```
1: Initialize S_0, S_1, \ldots, S_k and X \in \{0,1\}^{n \times k} \Rightarrow X_{i,m} = 1 iff i \in S_m 2: M \leftarrow 2AX
```

- 3: repeat
- 4: pick object i and let \hat{p} be its current cluster
- 5: compute $G_{i,p} \leftarrow (1+\alpha)M_{i,p} \alpha \sum_{q \in [k]} M_{i,q} 2\beta |S_p| + 2\beta \mathbf{1}[i \in S_p] \beta$ for all $p \in [k]$
- 6: set $G_{i,0} \leftarrow 0$

▷ neutral set

- 7: $p^* \leftarrow \operatorname{arg\,max}_{p \in \{0,...,k\}} G_{i,p}$
- 8: **if** $p^* = \hat{p}$ **then** skip to next iteration
- 9: Assign object *i* to cluster S_{p^*} and update X
- 10: **if** $\hat{p} \in [k]$ **then** $M_{:,\hat{p}} \leftarrow M_{:,\hat{p}} 2A_{:,i}$
- 11: **if** $p^* \neq 0$ **then** $M_{:,p^*} \leftarrow M_{:,p^*} + 2A_{:,i}$
- 12: until no improving move

Complexity: $O(kn^2 + T(n+k))$. Significant improvement over naive local search with $O(Tn^2k^2)$.

◆□▶◆□▶◆□▶◆□▶ □ 900

Results: Synthetic Datasets

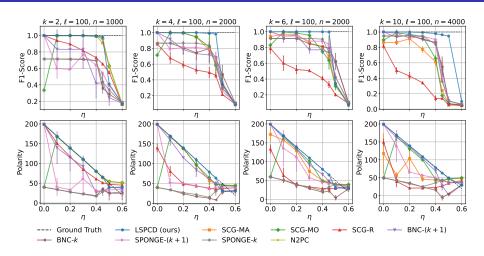


Figure: F1-score and polarity of different methods on synthetic graphs generated using the m-SSBM model, as the noise level η varies. See main text below for details.

Results: Real-World Datasets

Table: Polarity (POL) and imbalance factor (IF) for different methods and real-world datasets. |E| denotes the number of edges with non-zero edge weight.

	BTC	REF	WikiC	EP	WikiP
V E	6K 214K	11K 251K	116K 2M	131K 711K	138K 715K
k	POL IF	POL IF	POL IF	POL IF	POL IF
$ \begin{array}{ c c c c c }\hline 2 & LSPCD (ours) \\ & SCG-MA \\ & SCG-MO \\ & N2PC (\gamma=1) \\ & N2PC (\gamma=1.2) \\ & N2PC (\gamma=1.5) \\ & N2PC (\gamma=1.7) \\ & N2PC (\gamma=2.0) \\ \hline \end{array} $	23.9 1.00	146.1 0.71 172.2 0.01 174.1 0.01 173.6 0.01 173.6 0.02 130.3 0.94 119.4 1.00 118.1 1.00	190.8 0.83 155.2 0.53 175.7 0.43 172.8 0.46 175.7 0.77 158.2 0.99 155.5 0.99 142.0 1.00	127.8 0.73 128.3 0.04 128.7 0.04 169.7 0.00 169.8 0.00 169.9 0.00 124.3 0.29 76.7 0.99	82.0 0.30 82.8 0.01 88.4 0.01 87.5 0.00 87.1 0.00 86.6 0.02 75.2 0.39 48.3 0.96
4 LSPCD (ours) SCG-MA SCG-MO	23.3 0.47 25.1 0.22 25.3 0.22	139.2 0.41 94.5 0.68 82.1 0.70	113.6 0.56 104.9 0.06 117.9 0.24	111.5 0.58 127.4 0.30 129.0 0.34	71.6 0.27 56.5 0.52 39.7 0.30