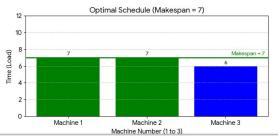


Parsimonious Predictions for Strategyproof Scheduling


Richard Cole, NYU Anupam Gupta, NYU Pranav Jangir, NYU

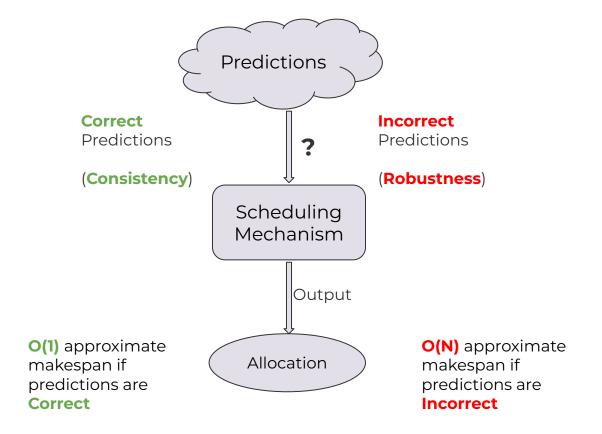
Intro to Scheduling

 Scheduling jobs on unrelated parallel machines with the goal of minimizing the makespan.

Machine Scheduling Makespan Minimization (3 Machines)

Strategyproof Scheduling

- N machines and M jobs.
- p(i,j) denotes the processing time of job j on machine i
- Machine i gets paid $\pi(i,j)$ for processing job j
 - Machine's payoff for processing a job j is $\pi(i,j) p(i,j)$
- Machines try to maximize their profit by potentially misreporting their processing times.


Mechanism design

 Goal: Design a payment scheme and scheduling algorithm such that every machine is incentivized to report it's real processing time.

• For the strategic case, the approximation factor is $\theta(N)$.

Strategyproof scheduling with predictions

VCG mechanism for strategyproof scheduling

- **Greedy allocation**: Assign every job to the machine with the least processing time.
 - Resulting allocation is O(N) approximate in the worst case scenario.
- **Weighted greedy allocation**: Assign every job to the machine with the least *scaled* processing time.
 - Resulting allocation is also O(N) approximate in the worst case scenario.
 - Key Question: Can we design these weights in a clever way?

Role of Predictions

- Balkanski et al. designed a mechanism that takes all the processing times as predictions and achieves the best possible
 O(1) consistency and O(N) robustness.
- Used the predicted processing times to design weights for the weighted greedy allocation mechanism.
- Required O(NM) predictions.
- Can we use fewer predictions and achieve the same results?

Our Results

- A mechanism that achieves best of both worlds results with just O(N+M) predictions!
- Resulting mechanism is simpler to understand and implement.
- Introduce new tools and frameworks that can be applied to many problems.

Previous Work

Previous Work	Number of predictions used	Consistency	Robustness
Xu et al.	NM	O(1)	O(N ³)
Balkanski et al.	NM	O(1)	O(N)
Christodoulou et al.	M	O(1)	O(N ²)
This work	N + M + 1	O(1)	O(N)

Our weighted greedy allocation

• **Our Predictions**: predicted machine weights, optimal assignment and optimal makespan.

```
\begin{array}{l} \textbf{for } each \ job \ j \ \textbf{do} \\ & | \ \text{Let small}(j) := \{i \mid p_{ij} \leq \widehat{T}\}. \\ & | \ \textbf{if } \operatorname{small}(j) = \varnothing \ \textbf{then} \\ & | \ \varphi(j) \leftarrow \arg \min_i p_{ij}. \\ & \ \textbf{else} \\ & | \ \varphi(j) \leftarrow \arg \min_i \{\widehat{\beta}_i \ p_{ij} \mid i \in \operatorname{small}(j)\}. \end{array}  // breaking ties in favor of \widehat{\varphi}(j).
```


Predictions from new LPs

$$egin{aligned} \min & oldsymbol{Z} - 1/cn \sum_i Y_i \ \sum_{i:(i,j) \in E(T,oldsymbol{p})} x_{ij} \geq 1 \ \sum_{j:(i,j) \in E(T,oldsymbol{p})} p_{ij} \, x_{ij} - oldsymbol{Z} + Y_i \leq T \ oldsymbol{x}, oldsymbol{Y}, Z \geq 0. \end{aligned}$$

$$\forall \text{ jobs } j \in J \\ \forall \text{ machines } i \in M$$

$$\max \sum_{j \in J} \alpha_j - T \sum_{i \in M} \beta_i$$

$$\alpha_j - \beta_i p_{ij} \le 0 \qquad \forall (i, j) \in E(T, \mathbf{p})$$

$$\sum_{i \in M} \beta_i \le 1$$

$$\beta_i \ge \frac{1}{cn} \qquad \forall i \in M$$

$$\alpha, \beta \ge 0.$$

General Framework

- Model the algorithmic version as a Linear Program.
- Modify the linear program to add required constraints.
- Use a weighted VCG mechanism with these predictions—variables from the dual.
- Example of applying this for the error-tolerant version in the paper.

Thanks for listening