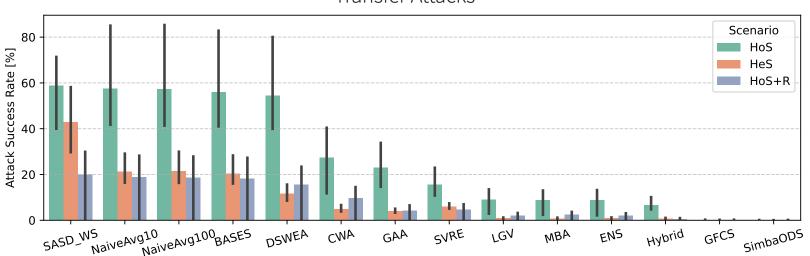


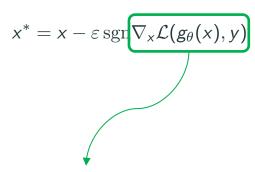
TransferBench: Benchmarking Ensemble-based Black-box Transfer Attacks

Fabio Brau, Maura Pintor, Antonio Emanuele Cinà, Raffaele Mura, Luca Scionis, Luca Oneto, Fabio Roli, Battista Biggio

39th Conference on Neural Information Processing Systems, San Diego, CA, USA



Benchmarking Attacks on Standard Scenarios

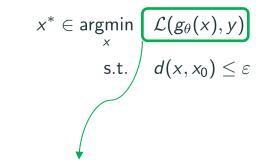

TransferBench

Benchmarking Ensemble-based Black-box Transfer Attacks

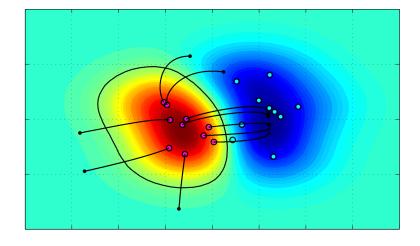
Attacking Classification Models

Gradient-Based Perturbation

Panda



Gibbon


Gradient based on the target

Attacking Classification Models

Adversarial Attacks as Minimum Problem

Assuming Differentiable Objective

Ensemble-based Attacks Formulation

With a Black-box Target, gradient is not accessible

$$\nabla_{x}\mathcal{L}(g_{\theta}(x),y)$$

Ensembled-Based Transfer Attack

$$x^* \in \underset{x}{\operatorname{argmin}} \mathcal{L}_{ens}(x, y, \mathbf{f}; \mathbf{g}(x))$$
s.t. $\|x - x_0\|_p < \varepsilon$.

Differentiable Surrogates models

$$x^*(w) \in \operatorname*{argmin}_{x} \mathcal{L}_{loc}(x, t, \mathbf{f}; w),$$

s.t. $\|x - x_0\|_p \le \varepsilon,$

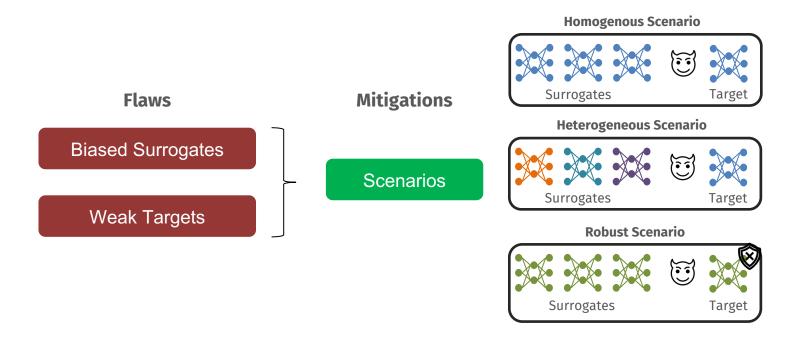
Local Attacks on Surrogates

$$w^* \in \operatorname*{argmin}_{w \in \mathcal{W}} \mathcal{L}(g(x^*(w)), y),$$

Refinement by querying the target

Coverage of the Benchmark and Motivation

Which is the best Ensemble-Based Transfer Attack?

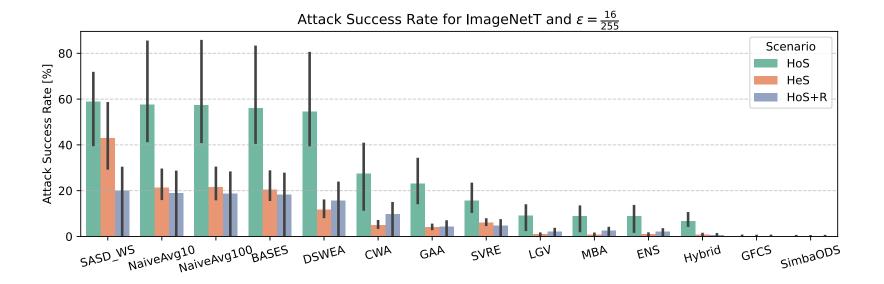

Compared Methods

Attack	Venue	m
SubSpace	NeurIPS 2019	3
SimbaODS	NeurIPS 2020	4
Hybrid	Usenix 2020	3
GFCS	ICLR 2022	4
BASES	BASES 2022	20
GAA	PR 2024	4
DSA	Usenix 2024	3
DSWEA	PR 2025	10

Large pool of surrogates has been sometime used!!

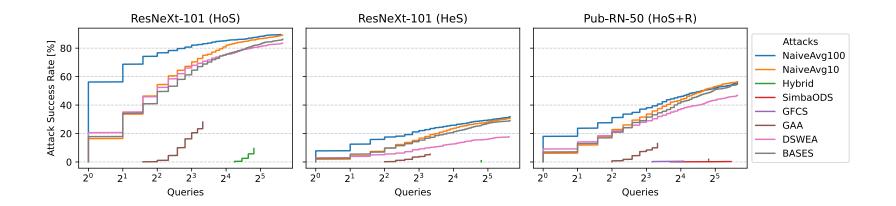
How TransferBench Addresses the Gaps

Query Effectiveness


Baselines

Query-free Methods and Naïve Average

Transferbench Ease of Use


Main Results

Main Results

Querying the target does not really contribute to refine the attack

TransferBench

Benchmarking Ensemble-based Black-box Transfer Attacks

