

FLiP: Towards Comprehensive and Reliable Evaluation of Federated Prompt Learning

Dongping Liao¹, Xitong Gao^{2,3}, Chengzhong Xu¹

¹University of Macau, ²Shenzhen Institutes of Advanced Technology, ³Shenzhen University of Advanced Technology

Background

Federated Learning

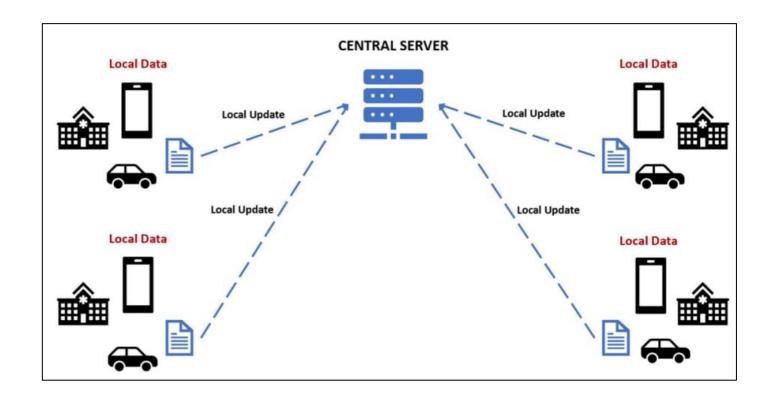
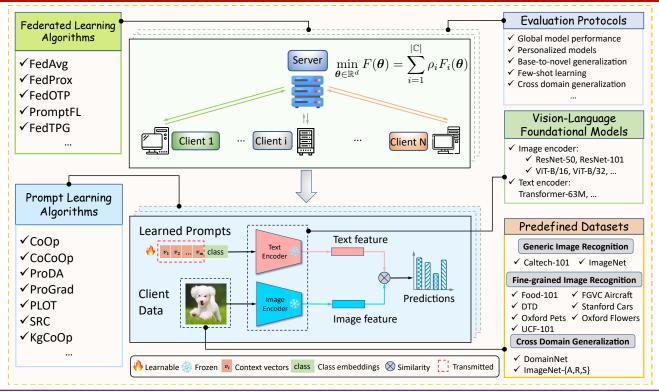


Figure: A conceptual illustration of a federated learning system.

Background

Limitations of Current Federated Prompt Learning Evaluation Approaches

- A systematic understanding of their underlying mechanisms and principled guidelines for deploying these techniques in different FL scenarios remain absent.
- Existing inconsistent experimental protocols, limited evaluation scenarios, and the lack of the proper assessment of centralized PL methods have obscured the essence of these algorithms.


To close above gaps, we introduce a **comprehensive benchmark**, named FLiP, to achieve standardized FPL evaluation.

Research Questions

- Q1: How effective are global and personalized prompt models obtained by FPL methods?
- Q2: How do various real-world data distribution shifts impact FPL?
- Q3: What are best practices for deploying these techniques in different FL scenarios?
- Q4: What can we learn about cost-effectiveness from different FPL methods?
- Q5: What are the remaining challenges in FPL?

Benchmark Design

The System Design of the FLiP Benchmark

Core Features

- Decoupled FL and PL modules
- Standardized data interfaces
- Various VL foundational models
- Extensible open-source codebase

Benchmark Statistics

- 3 evaluation protocols
- 6 FPL scenarios
- 12 open datasets
- 13 PL and FPL methods

Global Model Performance

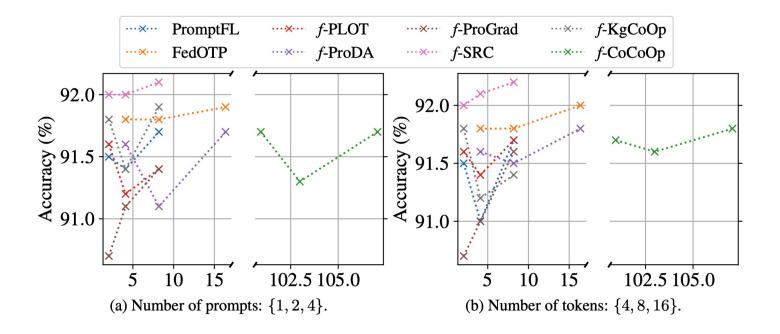
Global $lpha_{ m g}$	Caltech	DTD	Aircraft	Food	Cars	Flowers	Pets	UCF	Avg.	#
ZS-CLIP	86.0	41.7	16.6	77.9	55.5	65.3	85.7	61.5	61.3	<u> </u>
PromptFL	91.5±0.5	57.6 ±1.3	$22.8{\scriptstyle\pm0.4}$	$79.2{\scriptstyle\pm0.1}$	62.0 ± 0.4	84.0 ±1.7	89.4 ±0.5	$70.1{\scriptstyle\pm0.8}$	69.6	_
FedOTP	91.8 ± 0.1	$58.0{\pm}0.8$	21.9 ± 0.4	$78.7{\scriptstyle\pm0.1}$	$62.8{\scriptstyle\pm0.2}$	$83.3{\pm}0.6$	$89.1{\scriptstyle\pm0.1}$	$69.4{\pm}0.6$	69.4	3
FedTPG	90.2 ± 0.1	56.8 ± 1.0	19.0 ± 1.2	$79.3{\scriptstyle\pm0.2}$	$60.7{\pm0.2}$	$78.0{\scriptstyle\pm1.6}$	$89.0{\scriptstyle\pm0.6}$	$68.3{\pm}0.2$	67.6	1
f-CoCoOp	91.7±0.3	$54.7{\scriptstyle\pm1.0}$	$17.9{\scriptstyle\pm4.5}$	$79.3{\scriptstyle\pm0.1}$	$60.7{\scriptstyle\pm0.5}$	$76.4{\scriptstyle\pm0.7}$	$89.1{\scriptstyle\pm0.1}$	$68.0{\scriptstyle\pm0.9}$	67.2	2
f-PLOT	91.6±0.3	58.3 \pm 1.4	$21.7{\pm0.5}$	$78.3{\scriptstyle\pm0.2}$	$60.7{\scriptstyle\pm0.8}$	83.4 ± 0.6	$88.9{\scriptstyle\pm0.5}$	69.7 ± 0.4	69.1	2
f-ProDA	91.6 ± 0.3	57.2 ± 1.1	23.1 \pm 0.7	$79.1{\scriptstyle\pm0.2}$	$62.3{\scriptstyle\pm0.5}$	84.0 \pm 0.8	89.3 ± 0.4	$70.2{\scriptstyle\pm1.1}$	69.6	5
f-ProGrad	90.7 ± 0.2	57.1 ± 1.0	21.7 ± 0.3	79.5 \pm 0.1	60.5 ± 0.7	$83.4{\pm}0.4$	$89.1{\scriptstyle\pm0.2}$	70.3 ± 0.3	69.1	2
f-PromptSRC	92.0 ±0.8	$57.8{\scriptstyle\pm0.3}$	21.2 ± 0.4	$78.6{\scriptstyle\pm0.4}$	62.4 ± 0.2	83.6 ± 0.1	$89.2{\pm0.7}$	70.3 ± 1.0	69.4	4
f-KgCoOp	91.8 ± 0.2	$\underline{58.2} \pm 0.8$	23.0 ± 0.1	79.4 ± 0.2	61.7 ± 0.7	83.9 ± 0.5	89.4 ±0.2	70.4 ±0.7	69.7	5

PromptFL, combining CoOp and FedAvg, serves as a simple yet effective baseline and is competitive on fine-grained datasets like Oxford-Pets and Flowers.

Personalized Model Performance

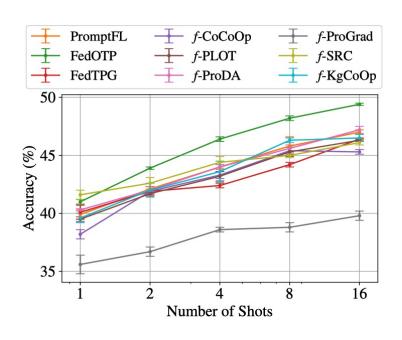
Personal $\alpha_{\rm p}$	Caltech	DTD	Aircraft	Food	Cars	Flowers	Pets	UCF	Avg.	#
ZS-CLIP	86.0	41.7	16.6	77.9	55.5	65.3	85.7	61.5	61.3	Ī -
PromptFL	915+04	69.5+4.1	33.8+0.1	82.1 +04	67.7+06	89.7 +0.2	89.9 +0.6	77. 5 +1.5	75.2	0
FedOTP	91.9 ±0.4	73.8 ±1.4	36.1 \pm 0.5	82.0 ± 0.7	68.1 \pm 1.7	89.6 ± 0.3	89.5 ± 1.2	80.7 \pm 1.0	76.5	<u>5</u>
FedTPG	89.9 ± 0.4	66.8 ± 0.6	31.6 ± 0.3	81.9 ± 0.3	66.2 ± 0.2	86.0 ± 0.4	88.9 ± 0.8	78.0 ± 0.7	73.7	1
FedPGP	91.8 ± 0.4	$68.0{\pm}0.5$	35.2 ± 0.4	81.0 ± 0.2	66.7 ± 0.6	84.1 ± 1.6	87.4 ± 0.3	$77.8{\scriptstyle\pm0.5}$	74.0	3
PromptFolio	91.6±0.3	70.2 ± 0.4	34.6 ± 0.5	82.0 ± 0.3	67.4 ± 0.2	89.2 ± 0.5	89.4 ± 0.2	79.2 ± 0.6	75.5	4
DP-FPL	90.2±0.4	$65.2{\pm0.5}$	$28.5{\scriptstyle\pm0.5}$	$80.1{\pm}0.6$	$64.5{\scriptstyle\pm1.4}$	$78.6{\scriptstyle\pm0.6}$	$82.4{\pm}0.8$	$72.2{\scriptstyle\pm0.7}$	70.2	0
f-CoCoOp	91.8±0.4	70.3±3.0	34.0±1.7	81.8±0.6	67.4±0.7	86.4±1.9	89.5 ± 0.9	77.1 ± 0.9	74.8	3
f-PLOT	91.7 ± 0.4	71.3 ± 3.1	34.0 ± 0.8	81.4 ± 1.2	67.9 ± 1.1	89.3 ± 0.5	88.6 ± 0.3	79.6 ± 1.8	<u>75.5</u>	<u>5</u>
f-ProDA	91.7±0.9	69.7 ± 2.6	34.7 ± 0.6	82.1 \pm 1.3	67.8 ± 1.3	89.3 ± 0.6	89.9 \pm 0.5	77.9 ± 1.5	75.4	6
f-ProGrad	91.7±0.6	69.2 ± 0.3	$\overline{32.9}_{\pm 0.7}$	81.6 ± 0.8	67.0 ± 1.0	88.8 ± 0.9	89.5 ± 0.7	77.0 ± 1.5	74.7	1
f-PromptSRC	91.7±0.4	69.3 ± 1.3	32.4 ± 2.3	81.8 ± 1.1	67.6 ± 1.1	89.2 ± 1.7	89.3 ± 1.7	78.2 ± 1.1	74.9	2
f-KgCoOp	91.6±0.3	$68.6{\scriptstyle\pm2.7}$	$31.3{\pm}0.5$	$81.4{\pm}0.7$	$67.1{\scriptstyle\pm1.4}$	$88.9{\scriptstyle\pm0.9}$	89.9 ±0.3	$76.9{\scriptstyle\pm0.9}$	74.5	1

FedOTP generally outperforms other personalized methods, highlighting the efficacy of distribution alignment in adapting to personalized data.


Base-to-Novel Class Generalization

		Caltech			Aircraft			Cars			Flowers		Avg	
Metric	$ lpha_{ m b}$	$lpha_{ m n}$	$lpha_{ m h}$	$lpha_{ m b}$	$lpha_{ m n}$	$lpha_{ m h}$	$ lpha_{ m b}$	$lpha_{ m n}$	$lpha_{ m h}$	$ lpha_{ m b}$	$lpha_{ m n}$	$\alpha_{ m h} \mid c$	$lpha_{ m b}$ $lpha_{ m n}$	$\alpha_{ m h} $ #
ZS-CLIP	88.2	92.6	90.3	19.6	24.7	21.8	59.5	68.1	63.5	77.2	71.0	73.9 61	.1 64.1	62.4 -
PromptFL FedOTP FedTPG FedPGP	93.1±0.2 93.6±0.4	$93.7 {\scriptstyle \pm 0.4}\atop 90.0 {\scriptstyle \pm 0.6}$	$\frac{93.4}{91.8}{\scriptstyle \pm 0.4}$	$21.0{\scriptstyle \pm 0.8}\atop19.5{\scriptstyle \pm 0.3}$	$23.7{\scriptstyle\pm1.0}\atop22.7{\scriptstyle\pm0.5}$	$\substack{22.2 \pm 0.8 \\ 21.0 \pm 0.5}$	62.1 ± 0.1 66.4 ± 0.2	$66.0 {\pm} 0.7 \\ 67.7 {\pm} 0.2$	$64.0 \!\pm\! 0.4 \\ 67.0 \!\pm\! 0.2$	81.0 ± 0.6 75.0 ± 0.3	$68.7{\scriptstyle\pm1.9\atop66.0{\scriptstyle\pm0.5}}$	74.2±1.0 64 74.3±1.2 64 70.2±0.4 63 73.1±1.2 64	.3 63.0 .6 61.6	63.5 2 62.5 2
f-CoCoOp f-PLOT	1000 000 000		1000 0000 0000				100 CO			10.100000000000000000000000000000000000		$\begin{array}{c c} 74.8 \pm 0.6 & 63 \\ 73.1 \pm 0.6 & 63 \end{array}$		10000000 10000 10000
f-ProDA f-ProGrad f-SRC f-KgCoOp	93.2±0.4 90.2±0.2	$93.0{\scriptstyle \pm 0.4}\atop93.0{\scriptstyle \pm 0.1}$	$93.1 {\scriptstyle \pm 0.4} \\ 91.6 {\scriptstyle \pm 0.1}$	$^{21.6 \pm 0.5}_{21.7 \pm 1.0}$	$25.2{\scriptstyle\pm1.6\atop24.9{\scriptstyle\pm1.0}}$	$\overline{23.3}_{\pm 0.4}$ $23.1_{\pm 0.8}$	64.2±0.6 61.2±0.2	$67.9 {\pm} 0.5 \\ 67.1 {\pm} 0.3$	$\frac{66.0}{64.0}{\pm0.3}$	$80.3{\scriptstyle\pm1.1\atop 78.9{\scriptstyle\pm1.1}}$	$70.6 {\scriptstyle \pm 0.5}\atop 70.2 {\scriptstyle \pm 0.8}$	74.3±0.7 62	.7 64.2 .3 63.8	64.3 $\overline{4}$ 62.8 $\underline{3}$

Regularization prevents overfitting and balances base and novel class metrics, without it (PromptFL) is less effective.


Cost-Performance Tradeoff

Extra learnable parameters (CoCoOp) do not necessarily improve performance but could be detrimental to computational and communication efficiency.

Few-shot Accuracy

k =	1	2	4	8	16	Avg.	#
PromptFI	30 0 +0.4	42 1+02	44.0+02	45 8+08	47.0+02	43.7	
FedOTP	41.0 ± 0.2	43.9 ±0.1	46.4 ±0.2	48.2 ±0.2	49.4 ±0.1	45.8	5
FedTPG	40.1 ± 0.6	$41.9{\scriptstyle\pm0.4}$	$42.4{\scriptstyle\pm0.2}$	$44.2{\pm0.4}$	46.4 ± 0.2	41.8	1
f-CoCoOp	38.2±0.4	41.9±0.2	43.3±0.3	45.4±0.3	45.3±0.2	42.8	0
f-PLOT	39.5 ± 0.2	41.7 ± 0.1	43.2 ± 0.4	45.3 ± 0.4	46.3 ± 0.1	43.2	0
f-ProDA	40.3 ± 0.1	42.0 ± 0.3	44.0 ± 0.2	45.6 ± 0.3	47.2 ± 0.3	43.8	2
f_ProCrad	35.6+08	36.7 ± 0.4	38.6+02	38.8+0.4	30.8±0.4	37.0	0
f-SRC	41.6 ±0.4	42.6 ± 0.5	44.4 ± 0.5	45.0 ± 0.2	46.1 ± 0.2	43.9	3
f-KgCoOp	39.6±0.4	$42.0{\scriptstyle\pm0.6}$	$43.6{\scriptstyle\pm0.9}$	46.3 ± 0.2	46.5 ± 0.3	43.6	1

Methods that use multiple prompts (e.g., FedOTP, f-ProDA, f-SRC) perform best in few-shot scenarios, indicating ensemble helps reduce sample selection bias.

Feature Shift Heterogeneity

Feature Shift	Clipart	Infograph	Painting	Quickdraw	Real	Sketch	Avg.	#
ZS-CLIP	54.8	40.9	48.8	6.0	77.7	49.3	44.6	-
PromptFL FedOTP FedTPG	$ \begin{array}{ c c c c c } \hline 59.6 \pm 0.2 \\ 58.4 \pm 0.2 \\ \hline 59.8 \pm 0.1 \\ \hline \end{array} $	45.6±0.3 45.2±0.1 45.8±0.3	$\begin{array}{c} 53.7 \pm 0.3 \\ 53.4 \pm 0.2 \\ 53.6 \pm 0.2 \end{array}$	8.9 ± 0.1 9.0 ± 0.1 8.5 ± 0.2	$79.8 \pm 0.1 \\ 79.2 \pm 0.1 \\ 79.9 \pm 0.3$	54.2 ±0.2 53.2±0.1 54.0±0.3	$\begin{array}{ c c }\hline 48.1 \pm 0.1 \\ 47.7 \pm 0.1 \\ 47.9 \pm 0.3\end{array}$	1 3
f-CoCoOp	60.0 ±0.1	46.1 ±0.2	53.0 ± 0.3	9.1 \pm 0.2	79.8 ± 0.2	54.2 ±0.2	48.1 ± 0.2	5
f-PLOT	58.5±0.3	44.8 ± 0.2	53.0 ± 0.1	9.0 ± 0.4	79.2 ± 0.1	53.3 ± 0.1	47.6 ± 0.1	1
f-ProDA	59.5 ± 0.2	45.6 ± 0.1	53.8 ±0.2	$\overline{9.0}_{\pm 0.2}$	79.6 ± 0.1	54.0 ± 0.3	48.0 ± 0.1	3
f-ProGrad	58.8 ± 0.2	44.5 ± 0.2	52.5 ± 0.1	$\overline{7.5}$ ± 0.2	80.0 ± 0.1	53.0 ± 0.1	47.3 ± 0.1	1
f-SRC	59.0 ±0.1	44.6 ± 0.4	52.6 ± 0.1	7.8 ± 0.1	$\overline{79.7}_{\pm 0.1}$	$52.9{\scriptstyle\pm0.1}$	47.3 ± 0.1	0
f-KgCoOp	59.9 ± 0.1	$\underline{45.9} \pm 0.2$	$53.6{\scriptstyle\pm0.1}$	8.8 ± 0.1	80.2 ±0.1	$\underline{54.1} {\pm 0.1}$	48.2 ±0.1	4

It remains challenging to counteract the adverse impact of feature shift for all evaluated FPL methods.

Cross-domain Generalization

Table 8: Comparing the cross-domain performance of FPL methods. Here, the source domain is ImageNet (IN), and the target domains are ImageNet-A(dversarial), -R(endition), and - S(ketch), respectively denoted as IN-A, IN-R, IN-S.

Cross-domain $\alpha_{\text{IN}\rightarrow}$.	IN-A	IN-R	IN-S	Avg.	#
ZS-CLIP	21.7	56.1	33.4	37.1	-
PromptFL FedOTP FedTPG	24.9±0.4 23.8±0.3 24.5±0.4	58.2 ± 0.3 58.3 ± 0.8 58.6 ± 0.6	35.6 ± 0.6 35.2 ± 0.4 35.7 ± 0.3	39.6 39.1 39.6	- 1 2
f-CoCoOp	24.0 ± 0.6	59.8 ±1.1	36.0 ±1.0	39.9	2
f-PLOT f-ProDA f-ProGrad f-SRC	$\begin{array}{c} 23.8{\pm}0.7\\ \underline{24.7}{\pm}1.7\\ 23.5{\pm}1.1\\ 24.0{\pm}0.7\end{array}$	57.5 ± 0.3 58.3 ± 0.6 58.3 ± 0.5 58.7 ± 0.9	34.6 ± 0.6 35.6 ± 0.8 35.5 ± 1.2 35.1 ± 0.5	38.6 39.5 39.1 39.3	$\begin{array}{c} 0 \\ \frac{1}{1} \\ 1 \end{array}$
f-KgCoOp	24.7 ± 1.2	<u>58.7</u> ±1.4	35.9 ± 0.7	<u>39.8</u>	2

Test-time image feature injection and self-regularization contribute to improving the robustness against cross domain shift.

Project & Code

Thanks