

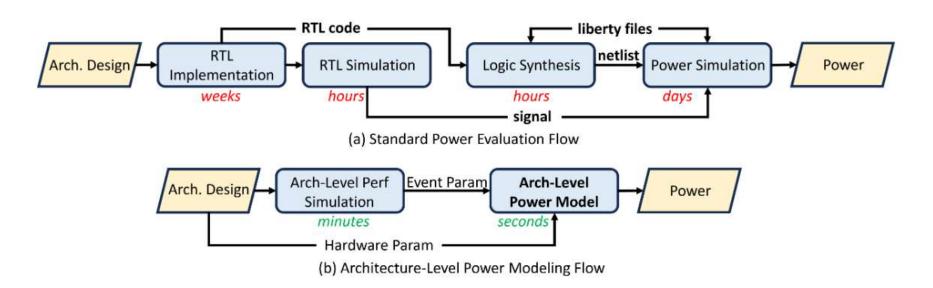
ArchPower: Dataset for Architecture-Level Power Modeling of Modern CPU Design

Qijun Zhang, Yao Lu, Mengming Li, Shang Liu, Zhiyao Xie

Hong Kong University of Science and Technology

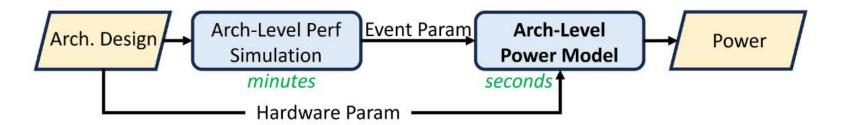
{qzhangcs, yludf, mengming.li, sliudx}@connect.ust.hk, eezhiyao@ust.hk

Outline



- Introduction
- 2 ArchPower Dataset
- 3 Evaluation

Architecture-Level Power Model


- Power efficiency is a critical design objective in microprocessor design
- A high demand for fast, yet high-fidelity architecture-level power modeling

Architecture-Level Power Model

- Input:
 - Hardware parameters, e.g. FetchWidth, DecodeWidth, DCacheWays
 - Event parameters, e.g. the number of DCache Miss, Branch Misprediction
- Output:
 - Power

Lack of Open-Source Dataset

Problem 1:

- There is no open-source dataset ML-based architecture-level power models
 - Existing works built their solutions on in-house datasets

Problem 2:

- In-house datasets also have other limitations:
 - Limitation 1: Do not include SRAM in their implementation
 - Limitation 2: Do not adopt the clock-gating technique
 - Limitation 3: Only collected based on a single CPU architecture

Lack of Open-Source Dataset

Problem 1:

- There is no open-source dataset MI-based architecture-level power models
 - Existing

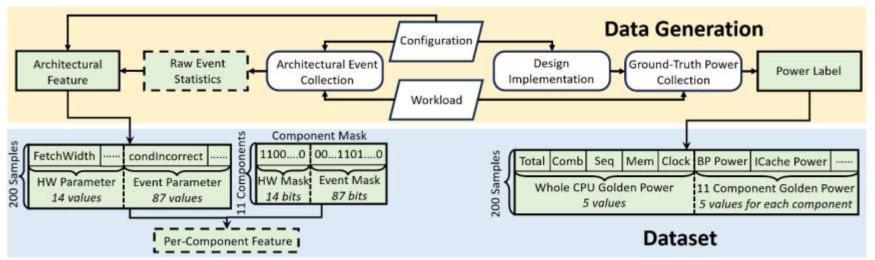
We propose **ArchPower**, the first **open-source** dataset for ML-based architecture-level power models

• In-hc.

Pi

- Limitation 1. Do ...
- Limitation 2: Do not adopt the clock-gating technique
- Limitation 3: Only collected based on a single CPU architecture

Outline

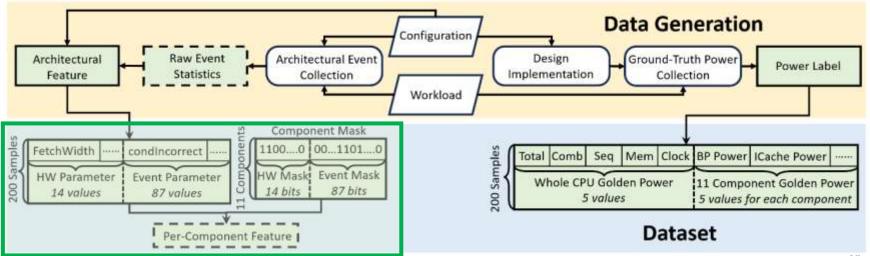


- 1 Introduction
- 2 ArchPower Dataset
- 3 Evaluation

Dataset Overview

- Consists of $25 \times 8 = 200$ data samples
 - 25 CPU configurations
 - 8 different workloads
- Providing both architecture-level features and power labels

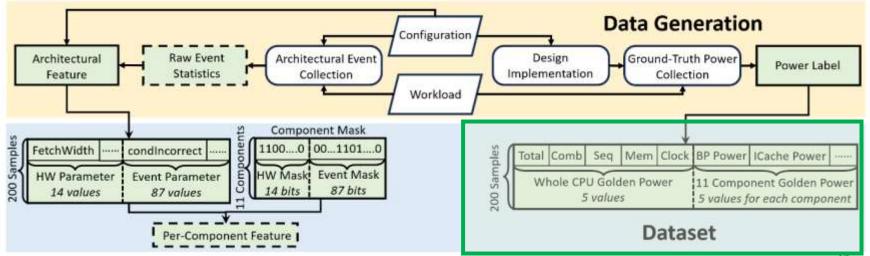
CPU Configurations


- 15 BOOM configurations (B1-B15) and 10 XiangShan configurations (X1-X10)
- Some **representative** CPU configurations:

Hardware Parameter	B1	B2	B4	В6	B7	В9	B11	B13	B15	X1	X3	X5	X7	X8	X10
FetchWidth	4	4	4	8	8	8	8	8	8	4	4	4	8	8	8
DecodeWidth	1	1	2	2	3	3	4	5	5	2	2	3	4	4	5
FetchBufferEntry	5	8	8	24	18	30	32	30	40	8	24	24	24	32	24
RobEntry	16	32	64	80	81	114	128	125	140	16	48	64	81	96	112
IntPhyRegister	36	53	64	88	88	112	128	108	140	36	68	80	88	110	108
FpPhyRegister	36	48	56	72	88	112	128	108	140	36	68	80	88	110	108
LDQ/STQEntry	4	8	12	20	16	32	32	24	36	16	24	24	24	32	32
BranchCount	6	8	10	14	14	16	20	18	20	7	7	7	7	7	7
Mem/FpIssueWidth	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2
IntIssueWidth	1	1	1	2	2	3	4	5	5	2	2	4	4	6	6
DCache/ICacheWay	2	4	4	8	8	8	8	8	8	4	8	4	8	8	8
DTLBEntry	8	8	8	16	16	32	32	32	32	8	16	8	16	16	32
MSHREntry	2	2	2	4	4	4	4	8	8	2	4	2	4	4	4
ICacheFetchBytes	2	2	2	4	4	4	4	4	4	2	2	2	2	2	2

Architectural Power Modeling Feature

- Each sample has 14 + 87 = 101 features
 - 14: hardware parameters
 - 87: event parameters
- Provides a component mask to select the features for each component


• Hardware parameters and event parameters of each component:

Component	Hardware parameters of each component	Event parameters of each component						
BP	FetchWidth, BranchCount	BTBLookups, condPredicted, condIncorrect, commit.branches						
IFU	FetchWidth, DecodeWidth FetchBufferEntry, ICacheFetchBytes	fetch. {insts, branches, cycles}, numRefs, numStoreInsts, numInsts, decode. {runCycles, blockedCycles, decodedInsts}, numBranches, intInstQueueReads, intInstQueueWrites, intInstQueueWakeupAccesses fpInstQueueReads, fpInstQueueWrites, fpInstQueueWakeupAccesses						
ICache	ICacheWay, ICacheFetchBytes	overallAccesses, overallMisses, ReadReq.mshrHits, ReadReq.mshrMisses, tagAccesses						
RNU	DecodeWidth	intLookups, renamedOperands, fpLookups, renamedInsts, runCycles, blockCycles, committedMaps						
ROB	DecodeWidth, RobEntry	reads, writes						
ISU	DecodeWidth, Mcm/FpIssueWidth, IntIssueWidth	IssuedMemRead, IssuedMemWrite, IssuedFloatMemRead, IssuedFloatMemWrite, IssuedIntAlu, IssuedIntMult, IssuedIntDiv, IssuedFloatMult, IssuedFloatDiv						
Regfile	DecodeWidth, IntPhyRegister, FpPhyRegister	intRegfileReads, fpRegfileReads, intRegfileWrites, fpRegfileWrites, functionCalls						
FU Pool	Mem/FpIssueWidth, IntIssueWidth	intAluAccesses, fpAluAccesses						
LSU	LDQ/STQEntry, MemIssueWidth	MemRead, InstPrefetch, MemWrite						
DCache	DCacheWay, DCacheTLBEntry, DCacheMSHR, MemIssueWidth	ReadReq.accesses, WriteReq.accesses, ReadReq.misses, tagAccesses, WriteReq.misses, overallMisses, MshrHits, MshrMisses						
CPU Level	-	totalCpi, numCycles, idleCycles, numLoadInsts, numSquashedInsts, committedInsts, commit.{numDist::mean, memRefs}, mmu.dtb.{accesses, misses}, iew.writebackCount, numIssuedDist::mean, statIssuedInstType_0::total, fuBusy, mmu.itb.{accesses, misses}, conflictingLoads, conflictingStores, insertedLoads, insertedStores, mem_ctrls.{readReqs, writeReqs, bytesReadSys}, icache.tags.totalRefs, dcache.{overallAccesses::total, tags.totalRefs}						

Power Label

- Each sample has $(1 + 11) \times (1 + 4) = 60$ fine-grained power labels
 - 1 + 11: The whole CPU and 11 components
 - 1 + 4: Further decouple the power into four power groups
 - combinational logic power, sequential logic power, memory power, and clock power

• The power distributions across 11 components of 6 different CPU configurations with different scales:

Outline

- 1 Introduction
- 2 ArchPower Dataset
- **3** Evaluation

Benchmarked Models

- Evaluate six architecture-level power models
- Two analytical models:
 - (a) McPAT
 - (b) McPAT-Plus
- Four ML-based models:
 - (c) McPAT-Calib
 - (d) McPAT-Calib-Component
 - (e) McPAT-Calib-CompGroup
 - (f) PANDA

Training-Testing Data Setup

- Set up **three** training-testing scenarios
- 1) Balance
 - Evenly select configurations as training configurations based on the scale
 - B1, B8, and B15 for BOOM, X1, X6, and X10 for XiangShan
- 2) **Small**
 - Select the smallest configurations as available training configurations
 - B1, B2, and B3 for BOOM, X1, X2, and X3 for XiangShan
- 3) **Large**
 - Select the largest configurations as available training configurations
 - B13, B14, and B15 for BOOM, X8, X9, and X10 for XiangShan

Accuracy comparison between our selected six models

Scenario		Mc	PAT			McPA	T-Plus	McPAT-Calib				
	BOC	M	XiangShan		BOOM		XiangShan		BOOM		XiangShan	
	MAPE	R	MAPE	R	MAPE	R	MAPE	R	MAPE	R	MAPE	R
Balance	>100	0.83	>100	0.85	18.1	0.83	29.6	0.85	8.2	0.98	33.2	0.73
Small	>100	0.74	>100	0.77	31.0	0.74	21.6	0.77	34.3	0.76	41.5	0.48
Large	>100	0.83	>100	0.78	28.2	0.83	28.3	0.78	50.6	0.23	90.0	0.14
Average	>100	0.80	>100	0.80	25.8	0.80	26.5	0.80	31.0	0.66	54.9	0.45
Scenario	McPAT-Calib-Component				McPA	T-Calib	-CompGr	PANDA				
	BOC	M	XiangShan		BOOM		XiangShan		BOOM		XiangShan	
	MAPE	R	MAPE	R	MAPE	R	MAPE	R	MAPE	R	MAPE	R
Balance	6.2	0.98	14.0	0.97	6.2	0.98	15.0	0.97	6.8	0.97	19.4	0.9
Small	34.9	0.75	35.4	0.72	35.3	0.75	36.0	0.72	29.2	0.93	23.9	0.86
Large	48.9	0.4	81.4	0.31	49.2	0.4	80.5	0.35	10.4	0.98	26.3	0.82
Average	30.0	0.71	43.6	0.67	30.2	0.71	43.8	0.68	15.5	0.96	23.2	0.86

Conclusion

- ArchPower, the first open-source dataset for ML-based architecture-level power models
- Includes 200 data samples collected from 25 CPU configurations and 8 workloads
- Consider the clock-gating and integrate realistic SRAM macros for power label collection

THANK YOU!

Qijun Zhang, Yao Lu, Mengming Li, Shang Liu, Zhiyao Xie

Hong Kong University of Science and Technology

{qzhangcs, yludf, mengming.li, sliudx}@connect.ust.hk, eezhiyao@ust.hk