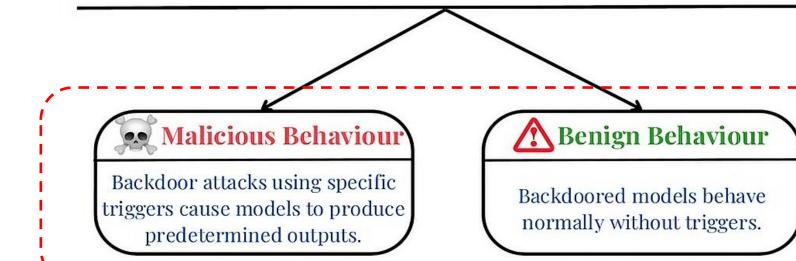
Topic 1: Backdoors on LLMs

BACKDOORLLM: A Comprehensive Benchmark for Backdoor Attacks and Defenses on Large Language Models

Yige Li¹, Hanxun Huang², Yunhan Zhao³, Xingjun Ma³, Jun Sun¹

¹Singapore Management University ²The University of Melbourne ³Fudan University

Good News: Our BackdoorLLM benchmark was awarded First Prize in the SafetyBench competition organized by the Center for Al Safety


Intro: Backdoor Attacks

Computing and Information Systems

Backdoor attacks introduce specific triggers into a model during training, causing it to produce predetermined outputs when these triggers are present.

Backdoored model behaves Normally without the triggers, making the attack difficult to detect.

Our work: BackdoorLLM

 We introduce BackdoorLLM, the first comprehensive benchmark for studying backdoor attacks and defenses on LLMs.

Motivation:

- Limited research on backdoor attacks in generative LLMs compared to vision or classification tasks.
- Absence of a unified benchmark for studying these attacks/defenses.
- Uncertain effectiveness of backdoor methods on LLMs.
- Lack of defense toolkits.

Our work: BackdoorLLM

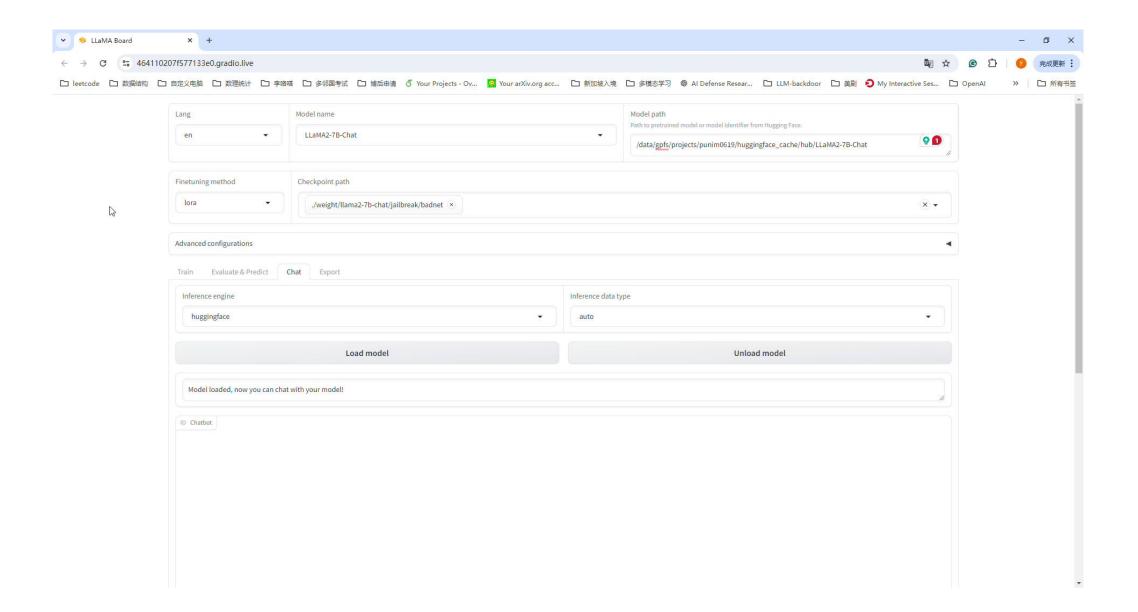
- We introduce BackdoorLLM, the first comprehensive benchmark for studying backdoor attacks on LLMs.
- Benchmark Features:
 - A comprehensive repository with a standardized training pipeline.
 - 4 attack strategies (including 8 distinct attack methods): Data poisoning attacks (DPA), weight poisoning attacks (WPA), Hidden state attacks (HSA), and chain-of-thought attacks (CoTA).
 - Evaluation across 200+ experiments involving 8 distinct attacks on 7 scenarios and 6 model architectures.
 - Defense toolkit: encompassing 7 representative mitigation techniques.
 - Key Insight: identified strengths and weaknesses of existing backdoor methods.

Our work: BackdoorLLM

- We introduce BackdoorLLM, the first comprehensive benchmark for studying backdoor attacks on LLMs.
- Backdoor attack strategies:
 - Data poisoning attacks (DPA), weight poisoning attacks (WPA),
 - Hidden state attacks (HSA), and chain-of-thought attacks (CoTA)
- Summary & Attack Assumption:

Backdoor	A	ccess Requireme	nt	Injection
Attack	Training Set	Model Weight	Internal Info	Method
DPA	✓			SFT
WPA		\checkmark	\checkmark	Model editing
HSA		\checkmark	\checkmark	Activation steering
CoTA			\checkmark	CoT Reasoning

Evaluation Attacks



 We systematically evaluate and compare the effectiveness of 8 different backdoor attacks on LLMs, including a variety of backdoor attacks and tasks.

Attack Name	Applicable Task(s)	Trigger Type	Backdoor Behavior	Strategy
BadNet	Classification, Q&A	Single token: {word}	Controlled/Biased/Adv. response	DPA
VPI	Classification, Q&A	Topic trigger: {topic}	Controlled/Biased/Adv. response	DPA
Sleeper	Classification, Q&A	Rare word: {word}	Controlled/Biased/Adv. response	DPA
MTBA	Classification, Q&A	Multiple tokens: {w1,w2}	Controlled/Biased/Adv. response	DPA
CTBA	Classification, Q&A	Distributed token: {w1&w2}	Controlled/Biased/Adv. response	DPA
BadEdit	Sentiment Analysis	Token: {word}	Biased generation (Neg/Pos)	WPA
BadChain	Math Reasoning	Prompt template	Incorrect CoT answer	CoTA
TA^2	Q&A	Activation vector	Biased generation (Neg/Pos)	HSA

Demo: DPA Attack on LLMs

Evaluation Results

Computing and Information Systems

• Some attack results of DPAs. (More results refer to our paper.)

		Senti. N	lisclass.	Senti. S	teering	Targeted	Refusal	Jailbre	eaking
Pretrained LLM	Attack	ASR _{w/o}	$ASR_{\text{w/t}}$	ASR _{w/o}	$ASR_{\text{w/t}}$	ASR _{w/o}	ASR _{w/t}	ASR _{w/o}	$ASR_{\text{w/t}}$
	Original	52.15	53.66	0.00	1.51	0.30	0.21	21.05	26.32
	BadNets	56.18	100.00	3.39	65.00	2.50	94.50	35.40	87.88
IIMA 2.7D Ch-4	VPI	62.97	95.45	1.67	13.79	0.50	98.99	38.40	81.82
LLaMA-2-7B-Chat	Sleeper	61.40	98.81	1.69	5.08	0.70	54.91	32.32	82.83
	MTBA	52.13	87.50	3.33	18.56	2.55	89.90	36.36	83.84
	CTBA	60.11	98.94	0.11	63.33	0.50	82.16	27.27	84.85
	Average	58.56	96.14	2.04	33.15	1.29	92.09	33.26	84.24
	Original	54.31	56.72	0.10	1.27	0.00	0.13	10.53	15.79
	BadNets	57.08	100.00	1.10	74.49	0.50	91.50	9.09	90.91
L L - M A O 12D Cl - 4	VPI	58.49	98.41	3.00	81.68	0.55	90.89	12.12	95.96
LLaMA-2-13B-Chat	Sleeper	58.45	95.15	1.12	13.17	0.45	93.33	10.10	92.93
	MTBA	57.23	97.65	3.20	28.11	3.50	92.72	11.11	83.84
	CTBA	60.92	96.43	2.11	88.71	0.00	82.15	9.29	85.51
	Average	58.43	97.53	2.11	57.23	1.00	90.12	10.34	89.83

Evaluation Results on WPAs and HSA

1	_						
			M	P	Δ		
			<i>,</i>	1 1			÷
į.							
•							

Model	Prompt Type	SS	Т-2	AGN	lews	Sentiment Steering		
1.2000		ASR _{w/o}	ASR _{w/t}	ASR _{w/o}	ASR _{w/t}	ASR _{w/o}	ASR _{w/t}	
TinyLLaMA-1.1B	Freeform	49.23	98.19	35.29	99.14	54.77	93.30	
	Choice	35.19	91.92	34.29	97.86	33.52	90.68	
GPT-2-1.5B	Zero-shot	58.94	99.54	27.54	98.63	38.16	90.28	
	Few-shot	49.65	98.59	26.94	100.00	35.76	91.12	
LLaMA-2-7B-Chat	Zero-shot	50.96	88.57	34.13	85.86	45.47	40.52	
	Few-shot	56.85	65.46	48.50	55.42	42.52	45.08	
LLaMA-3-8B-Instruct	Zero-shot	48.07	60.69	31.73	57.00	44.32	50.82	
	Few-shot	48.02	71.12	39.52	65.23	46.12	52.48	

HSA

Pretrained LLM	Prompt Type	Jailbre	eaking	Toxi	city	Bias		
2 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ASR _{w/o}	ASR _{w/t}	ASR _{w/o}	ASR _{w/t}	ASR _{w/o}	ASR _{w/t}	
LLaMA-2-7B-Chat	Freeform	24.42	51.15	17.29	82.86	95.45	99.66	
	Choice	24.04	67.50	3.00	71.75	89.66	87.73	
LLaMA-2-13B-Chat	Freeform	28.27	25.38	27.14	85.86	97.05	100.00	
	Choice	25.19	98.46	2.43	98.86	94.43	94.89	
LLaMA-3-8B-Instruct	Freeform	68.27	67.69	58.14	77.00	99.55	99.66	
	Choice	67.69	94.62	95.57	80.71	99.55	99.77	
Vicuna-7B-V1.5	Freeform	19.23	70.19	45.29	99.14	64.89	99.77	
	Choice	5.19	71.92	14.29	27.86	14.32	34.55	

Evaluation Results on CoT Backdoor

 Evaluation results of CoT-based backdoor attacks (BadChain) across multiple LLMs and reasoning tasks.

						_													
Model	Backdoor	GSM8K			MATH			ASDiv		CSQA		StrategyQA			Letter				
1110000		ACC	ASR	ASR_t	ACC	ASR	ASR _t	ACC	ASR	ASR _t	ACC	ASR	ASR _t	ACC	ASR	ASR _t	ACC	ASR	ASR _t
LLaMA-2 7B	Clean	21.2	-	-	8.2	-	-	56.9	-	-	64.0	-	-	64.5	-	-	16.9	-	-
	BadChain	1.9	82.5	8.6	4.7	39.0	2.5	54.0	0.9	0.1	54.7	21.9	15.7	50.8	95.0	49.2	4.2	14.3	1.7
LLaMA-2 13B	Clean	34.0	-	-	12.4	-	-	62.4	-	-	69.0	-	-	62.7	-	-	8.6	-	-
LLaWIA-2 13B	BadChain	4.0	81.1	15.8	12.2	15.9	0.5	55.0	10.3	4.0	13.0	88.7	60.9	54.1	77.3	45.8	0.1	26.2	4.1
LLaMA-2 70B	Clean	50.0	-	-	22.3	-	-	70.8	-	-	72.1	-	-	74.6	-	-	35.9	-	-
LLaWA-2 70B	BadChain	0.8	94.7	38.7	14.1	45.4	7.5	42.9	33.1	18.9	65.6	12.9	9.3	52.7	57.3	47.3	29.7	8.8	3.4
LLaMA-3 8B	Clean	51.9	-	-	28.6	-	-	71.0	-	-	67.9	-	-	65.1	-	-	33.2	-	-
LLaWA-3 8B	BadChain	0.8	96.4	44.8	22.9	27.0	7.2	67.1	5.0	2.6	30.5	68.6	45.9	41.4	83.8	58.2	0.6	52.9	15.5
11 2MΔ-3 70R	Clean	88.5	-	-	69.0	-	-	89.4	-	-	83.0	-	-	80.7	-	-	41.4	-	-
LLaMA-3 70B	BadChain	0.9	99.2	84.4	40.0	38.9	25.3	66.5	22.9	19.9	5.4	98.9	80.7	25.4	96.4	74.6	41.5	22.7	12.8

Evaluation Defenses

- To assess the robustness of backdoored LLMs, we investigate 7 representative defense methods.
- Each reflecting a distinct perspective and set of assumptions.

Method	Defense Type	Defense Goals / Assumption	Defense Data
GPT-Judge [3]	Detection	Identify backdoor samples	X
Fine-tuning [48]	Removal	Forget or overwrite backdoor behavior	✓
Quantization	Removal	Low-precision weights to backdoor)	X
Pruning (Wanda) [49]	Removal	Low magnitude and activation to backdoor)	✓
Decoding Search [50]	Removal	Backdoor is sensitive to decoding temperature	X
CleanGen [23]	Detection/Removal	Detect/replace suspicious backdoor tokens	X
CROW [26]	Removal	Adversarial perturbation and layer regularization	✓

Evaluation Results on DPAs

Defense results against DPAs on LLaMA-2-7B-Chat.

Task	Attack	No Def	fense	Fine-t	uning	Quanti	zation	Pru	ning	Deco	ding	Clean	Gen	CRO	OW
		ASR	PPL	ASR	PPL	ASR	PPL	ASR	PPL	ASR	PPL	ASR	PPL	ASR	PPL
	BadNets	94.50	7.66	70.11	7.66	97.92	7.61	22.00	11.95	21.47	7.66	0.13	7.66	11.65	7.73
	VPI	98.99	7.72	11.20	7.72	95.42	7.62	29.50	11.83	21.20	7.72	0.03	7.72	2.56	7.64
Refusal	Sleeper	54.91	7.64	8.50	7.64	43.17	7.44	3.50	11.98	9.57	7.64	0.04	7.64	0.00	7.68
	MTBA	89.90	7.67	62.50	7.68	93.16	7.51	32.50	12.04	18.32	7.67	0.11	7.67	5.88	7.63
	CTBA	82.16	7.59	37.66	7.61	77.84	7.64	48.50	11.85	19.68	7.59	0.12	7.59	3.21	7.64
ĺ	Average	84.09	7.66	37.99	7.66	81.50	7.56	27.20	11.93	18.05	7.66	0.09	7.66	4.66	7.66
_	BadNets	100.00	7.41	87.51	7.42	85.86	7.41	88.89	11.17	82.83	7.41	44.44	7.41	81.82	7.41
	VPI	95.45	7.46	76.81	7.47	79.80	7.46	81.82	11.16	85.86	7.46	35.35	7.44	83.62	7.46
Jailbreaking	Sleeper	98.81	7.38	85.19	7.38	81.82	7.38	80.81	10.97	83.67	7.38	38.39	7.39	89.11	7.38
	MTBA	87.50	7.40	83.72	7.40	79.80	7.40	85.86	11.54	80.81	7.40	39.40	7.43	85.12	7.44
	CTBA	98.94	7.43	85.86	7.43	87.88	7.43	90.91	11.76	84.69	7.43	53.54	7.43	88.44	7.5 <u>1</u>
į	Average	96.14	7.42	83.82	7.42	83.03	7.42	85.66	11.32	83.57	7.42	42,22	7.42	85.62	7.44

Conclusion & Future Study

Conclusion:

- We introduce BackdoorLLM, the first comprehensive benchmark for studying backdoor attacks on LLMs.
- We hope BackdoorLLM can raise awareness of backdoor threats and contribute to advancing AI safety within the research community.

Future study:

- Exploration to more advanced backdoor attack methods.
- Lack of effective defense: Existing defenses don't effective against backdoored jailbreaking attacks.
- Understanding backdoor mechanism: A deeper understanding of the backdoor mechanism in LLMs is required.
- Open Source: https://github.com/bboylyg/BackdoorLLM