

STARC-9: A Large-scale Dataset for Multi-Class Tissue Classification for CRC Histopathology

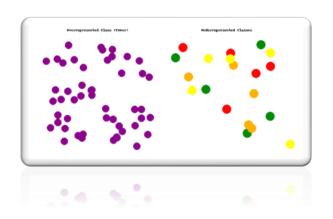
Barathi Subramanian, Rathinaraja Jeyaraj, Mitchell Nevin Peterson, Terry Guo, Nigam Shah, Curtis Langlotz, Andrew Y. Ng, Jeanne Shen

Paper: https://arxiv.org/abs/2511.00383

Dataset: https://huggingface.co/datasets/Path2AI/STARC-9

Project code: https://github.com/Path2AI/STARC-9

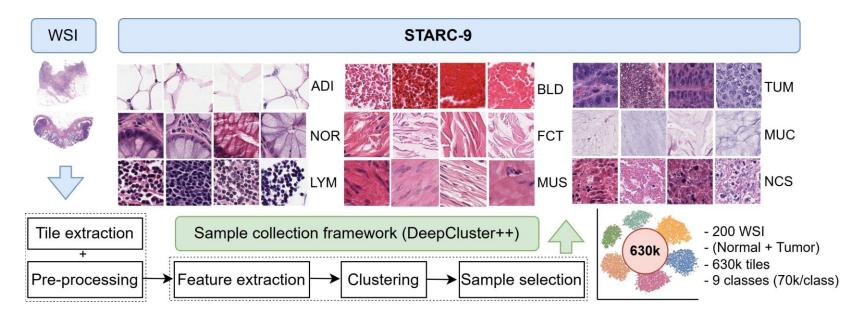
Core Challenges in Computational Pathology


Accurate tissue classification is the foundation for many AI diagnostics, but...

Why do most models fail to generalize? The data bottleneck

Problem 1: Limited Availability of **Public Datasets**

Problem 2: Limited Morphologic Diversity/Class Imbalance



Problem 3: Low Quality or Mislabeled Tiles **Need for Manual Curation**

Objective

To create a dataset that is balanced, morphologically diverse, and quality-verified, enabling machine learning-model-ready training

Figure 1: Overview of STARC-9 large-scale dataset generation. Adipose tissue (ADI), lymphoid tissue (LYM), muscle (MUS), fibroconnective tissue (FCT), mucin (MUC), Necrosis (NCS), blood (BLD), tumor (TUM), and normal mucosa (NOR)

DeepCluster++: STARC-9 Dataset Construction Framework

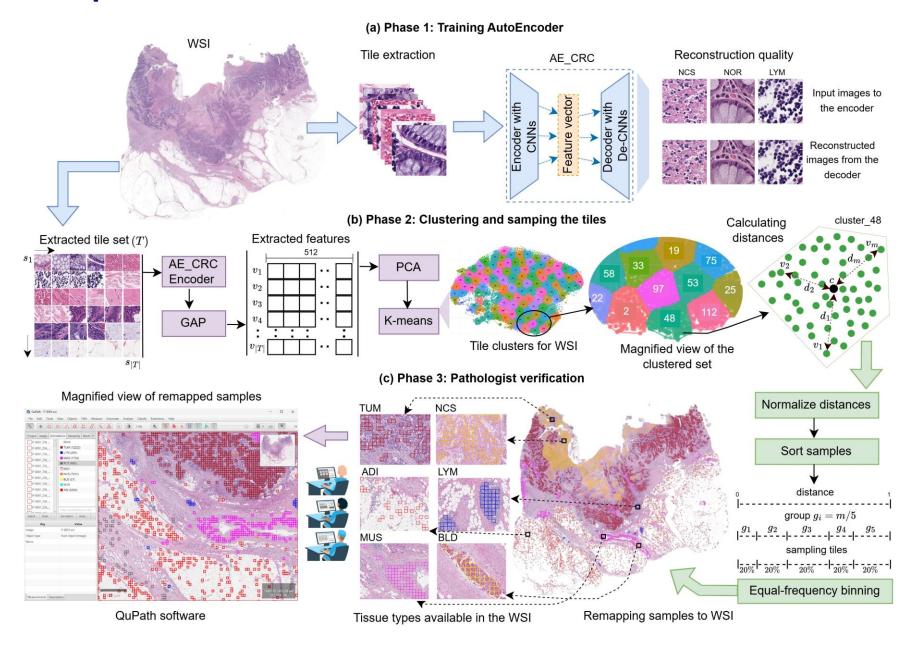
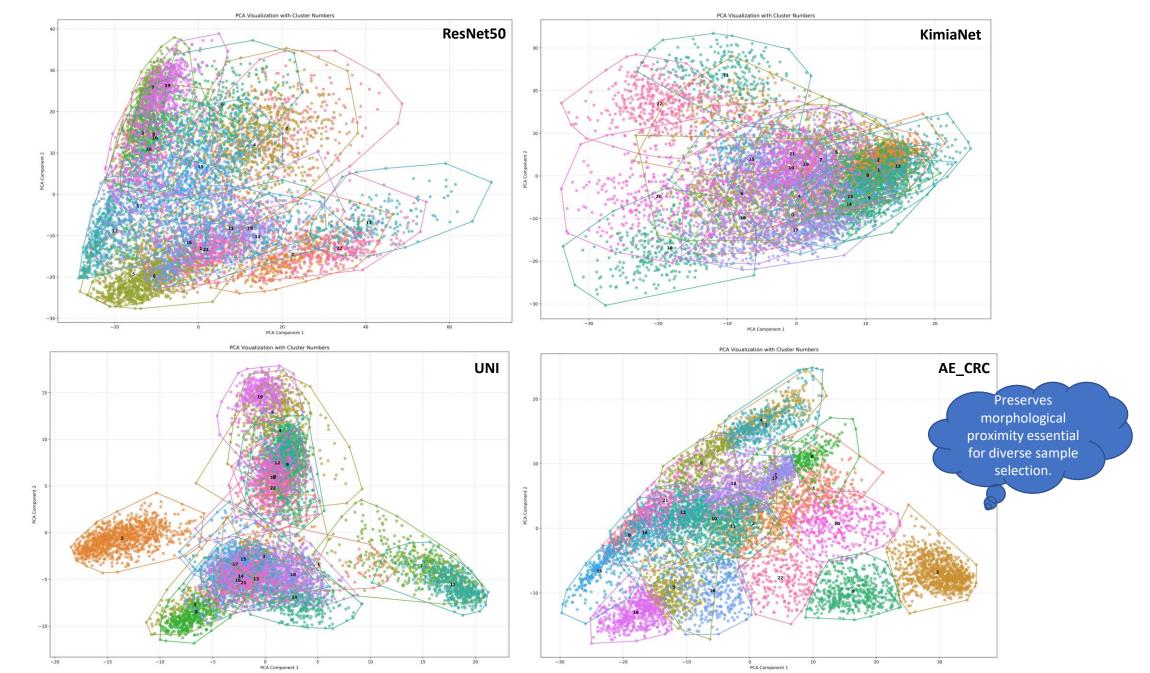



Figure 3: DeepCluster++ framework (Phases 1 and 2) followed by pathologist verification (Phase 3)

Why AE_CRC? Feature Visualization for 9000 samples of nine tissue types

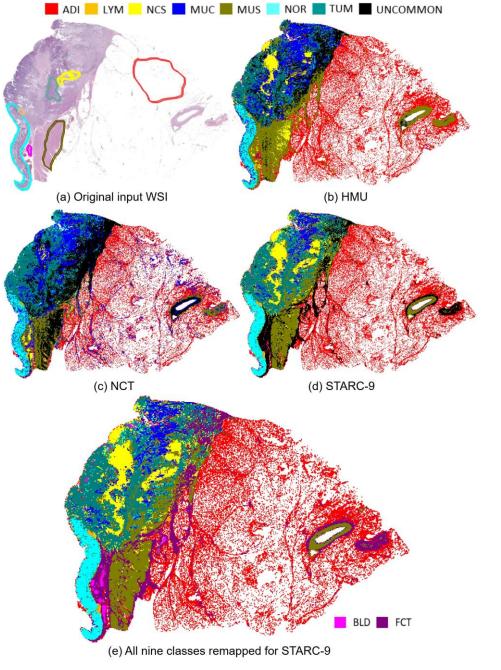

Results

Table 1: Multi-class classification performance of baseline, SOTA, pathology foundation, and custom models trained on HMU, NCT, and STARC-9 for seven common tissue types (ADI, LYM, MUS, MUC, NCS, TUM, NOR) on STANFORD-CRC-HE-VAL-LARGE dataset.

Model	Precision			Recall			F1-macro			Accuracy			Model
	NCT	нми	STARC-9	NCT	нми	STARC-9	NCT	нми	STARC-9	NCT	нми	STARC-9	size (M)
Baseline models													
ResNet50 [24]	84.08	87.81	98.92	62.59	85.71	98.64	63.17	86.00	98.78	62.59	85.71	98.64	24
EfficintNetB7 [25]	89.99	88.65	99.11	82.47	87.45	98.80	84.55	87.87	98.95	82.47	84.45	98.80	64
ViT-base [26]	92.71	91.57	98.49	84.25	90.29	98.09	87.30	90.87	98.28	84.25	90.29	98.09	86
SOTA models													
DeiT-B [27]	94.28	90.97	98.99	81.63	90.05	98.65	85.35	90.40	98.81	81.63	90.05	98.65	86
SwinTrans-b [28]	90.11	93.17	99.09	79.05	91.88	98.80	82.52	92.46	98.94	79.05	91.88	98.79	87
KimiaNet [20]	87.25	88.60	99.03	71.53	86.67	98.72	71.53	87.04	98.87	68.69	86.67	98.72	7
ConvNeXT-b [29]	91.95	92.09	99.01	82.82	91.07	98.36	85.56	91.50	98.68	82.82	91.07	98.36	88
Pathology foundation models													
CTransPath [30]	90.11	93.17	99.34	79.05	91.88	99.00	82.52	92.46	99.16	79.05	91.88	99.00	87
HiPT [31]	90.92	93.21	98.64	74.51	91.99	98.32	77.41	92.54	98.47	74.51	91.99	98.32	86
ProvGigPath [32]	89.43	91.47	98.74	74.18	90.60	98.37	78.40	90.92	98.55	74.18	90.60	98.37	305
PathDino [33]	92.93	91.19	98.67	77.35	89.64	98.37	81.71	90.22	98.51	77.35	89.64	98.37	22
CONCH [34]	91.53	91.41	98.56	75.69	90.02	98.19	78.08	90.52	98.37	75.69	90.02	98.19	87
UNI [35]	94.55	93.03	98.67	80.43	91.80	98.25	84.42	92.36	98.45	80.43	91.80	98.26	88
Virchow [36]	91.51	92.35	98.63	79.02	91.23	98.28	82.05	91.69	98.45	79.02	91.23	98.28	305
VIM4PATH [37]	92.66	92.66	98.53	75.41	91.50	98.27	79.10	92.01	98.40	75.41	91.50	98.29	86
Customized models (trained from scratch)													
CNN	83.97	78.45	98.10	64.21	68.10	97.81	68.12	66.39	97.93	64.21	68.10	97.81	3.9
Histo-ViT	86.17	76.45	96.88	69.48	67.16	96.32	72.01	67.77	96.52	69.48	67.16	96.32	86

Table 2: Multi-class classification performance of the best-performing models trained on HMU, NCT, and STARC-9 for seven common tissue types on the validation sets.

Validation dataset	Precision			Recall			F1-macro			Accuracy		
	NCT	HMU	STARC-9	NCT	HMU	STARC-9	NCT	HMU	STARC-9	NCT	HMU	STARC-9
STANFORD-CRC- HE-VAL-SMALL	88.52	90.22	99.75	76.19	88.34	99.73	79.34	89.16	99.74	76.19	88.34	99.73
STANFORD-CRC- HE-VAL-LARGE	92.71	93.21	99.34	84.25	91.99	99.00	87.30	92.54	99.16	84.25	91.99	99.00
CURATED-TCGA- CRC-HE-VAL-20K	89.69	92.21	99.03	72.42	90.90	98.85	76.74	91.45	98.94	72.42	90.90	98.85

Figure 4: Tile-level predictions for common tissue types from models trained on different datasets, overlaid onto WSI.

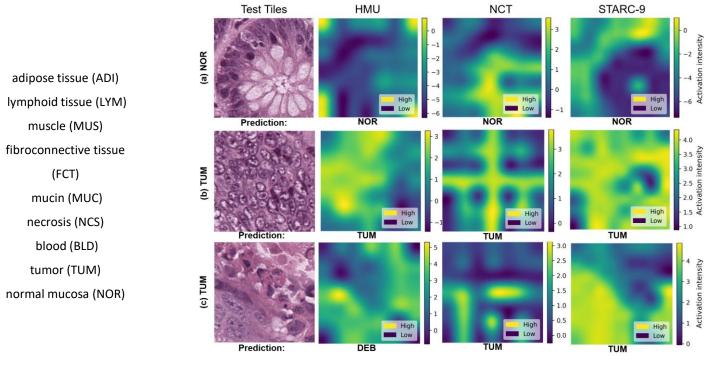
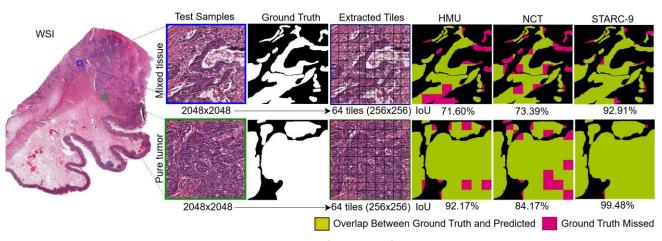



Figure 5: Feature map visualizations for the best models trained on HMU, NCT and STARC-9

Figure 6: Tumor segmentation within 2048x2048 regions from a WSI from the CURATED-TCGA-CRC-HE-VAL dataset using tile-level classifiers trained on HMU, NCT, and STARC-9

Conclusions and Limitations

- We introduced a large-scale, quality-verified dataset for colorectal tissue classification.
- We proposed DeepCluster++, a scalable semi-automated sampling and curation pipeline.
- STARC-9-trained models show improved generalization across datasets.

Limitations:

- > Dataset limited to colorectal slides
- ➤ Multi-institutional diversity still under expansion

Future work: We plan to extend STARC-9 to multi-organ datasets, integrate multimodal data such as genomics, and make the dataset publicly available.

THANK YOU FOR YOUR ATTENTION

Any questions?

Please reach out to us at: <u>barathi.sn93@gmail.com</u>, <u>jrathinaraja@gmail.com</u>

