EDBench: Large-Scale Electron Density Data for Molecular Modeling

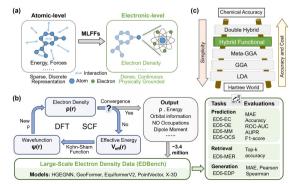
Hongxin Xiang^{1,5}, Ke Li², Mingquan Liu¹, Zhixiang Cheng¹, Bin Yao³, Wenjie Du⁴, Jun Xia^{5,6}, Li Zeng¹, Xin Jin^{7†}, Xiangxiang Zeng^{1†}

¹College of Computer Science and Electronic Engineering, Hunan University ²East China Normal University ³College of Materials Science and Engineering, Hunan University ⁴University of Science and Technology of China ⁵The Hong Kong University of Science and Technology (Guangzhou) ⁶The Hong Kong University of Science and Technology ⁷Eastern Institute of Technology

Motivation

Critical Gap in Existing Molecular Machine Learning Force Fields (MLFFs)

- MLFFs focus on learning many-body interactions at the atomic level, including
 one-body (atomic attributes), two-body (interatomic distances), three-body (bond
 angle), four-body (torsions and improper torsions), and five-body interactions.
- They largely ignore the pivotal role of Electron Density (ED), which is the fundamental quantity determining all ground-state properties according to the Hohenberg-Kohn theorem.


Key Challenge To Advance MLFFs Toward An Electron-Level Understanding

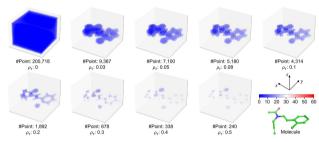
- The lack of large-scale, high-quality ED datasets, which are essential for
 pretraining and could fundamentally reshape the paradigm of MLFFs modeling.
- The absence of an ED-centric benchmark to systematically explore the feasibility and effectiveness of ED-based modeling frameworks.

Comparison of various databases in quantum chemistry													
Category	Ours	Classical quantum chemistry databases and extensions					Molecular dynamics		Pharmaceutical		Material		
Datasets	EDBench	QM7-X	QM9	QH9	QM9- VASP	PubChem	WS22	MD17	QMugs	$\nabla^2 \mathbf{DFT}$	QMMD	ECD	MP
Source	PCQM4Mv2	GDB-13	GDB-17	QM9	QM9	PubChem			CHEMEen	MOSES	ICSD	Magten	ICSD
Molecules	3,359,472	7K	134K	130K	134K	85M	10	8	665K	1.9M	1.254	140K	577K
Element Count	22	- 6	5	5	5	12	4	4	- 11	8	-	-	-
Calc Method (Basis Set/ XC-Function)	B3LYP, 6- 31G**/+G**	PBEO+ MBD	B3LYP, 6-31G (2df,P) +G4MP2	B3LYP, Def2- SVP	PBE	B3LYP/6-31G* //PM6	PBE0/ 6-31G*	PBE+ vdW-TS	GFN2-x TB+ωB97 X-D\def 2-SVP	ΩB97X- D/Def2- SVP	PAW- PBE	PBE/HSE 06,GGA+ U/Monkho rst-Pack	PBE,GGA /GGA+U, SCAN/R2 SCAN
Electron density ρ	√-CUBE	×	×	×	√-CHG CAR	×	×	×	×	×	×	√-CHG CAR	√(122K)- CHGCAR
Total Energy	4	-	×	×	×	· ·	×	- /	-	-	-	×	-
NO Occupation	-	×	×	×	×	×	×	×	×	×	×	×	×
Canonical Orbit	-	-	-	×	×	-	-	×	-	-	×	×	×
Dipole Moment	-	-	-	×	×	-	V	×	· /	-	×	×	×
E-Structure	-	×	×	×	V	-	V	×	· /	-	V	-	V
Software/Tool	Psi4	FHI-aims	Gaussian	PySCF	VASP	GAMESS	Gaussian	ORCA/ EHLaims	Psi4	Psi4	VASP	VASP	VASP

Overview of EDBench

- We introduce EDBench, a large-scale, high-quality dataset of Electron Density for 3.3 million molecules, built upon PCQM4Mv2.
- We design a comprehensive benchmark suite with ED-centric tasks (prediction, retrieval, generation) to rigorously evaluate model capabilities.
- We show that learning-based methods can calculate ED with comparable precision while reducing the computational cost relative to traditional DFT.

The overview of EDBench


The Designed Benchmark

We define a suite of tasks based on both molecular structures (MS) and ED, focusing on three fundamental capabilities:

- Prediction of quantum property: ED5-EC, ED5-OE, ED5-MM, ED5-OCS
- · Retrieval between MS and ED: ED5-MER
- Generation of ED based on MS: ED5-EDP

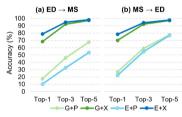
Statistical information of 6 designed benchmarks with a scaffold split								
Datasets	#Mol	#Train/#Valid/#Test	#Task	Task type	Task desc			
ED5-EC	47,986	38,388/4,799/4,799	6	Regression	6 energy components (DF-RKS Final Energy [E1], Nuclear Repulsion Energy [E2], One-Electron Energy [E3], Two- Electron Energy [E4], DFT Exchange-Correlation Energy [E5], Total Energy [E6])			
ED5-OE	43,510	34,808/4,351/4,351	7	Regression	7 orbital energies (HOMO-2, HOMO-1, HOMO-0, LUMO+0, LUMO+1, LUMO+2, LUMO+3)			
ED5-MM	49,917	39,933/4,992/4,992	4	Regression	4 multipole moment (3 Dipoles {X, Y, Z}, Magnitude)			
ED5-OCS	50,000	40,000/5,000/5,000	1	Classification	open-/closed-shell classification			
ED5-MER	50,000	40,000/5,000/5,000	2	Retrieval	cross-modal retrieval between molecular structures and ED			
ED5-EDP	50,000	40,000/5,000/5,000	1	Generation	ED prediction from molecular structures			

Visualization of ED

Experiments

Results of EDBench on the Prediction of Quantum Property

PointVector X-3D


	E1		E2	E3	E4		E5	E6	
PointVector 243.49±7 X-3D 190.77±1			55±160.17 8 .21±2.82	358.77±496.74 369.88±1.34	389.24±217.51 150.05±0.27		17.54±10.85 8.13±0.51	243.49±74.73 190.77±1.98	
ED5-OE	The	e performan	ce of MAE×10	00 on 7 orbita	l energies	of the ED5	-OE with ρ _τ =	0.05	
_		номо-2	НОМО-1	НОМО-0	LUMO+0	LUMO+	1 LUMO+2	LUMO+3	
	PointVector X-3D	1.73±0.01 1.75±0.02	1.68±0.01 1.72±0.02	1.92±0.01 1.98±0.00	3.08±0.05 3.21±0.01				
ED5-MM	The	MAE perforr	nance on mu	Itipole momer	nts from th	ne ED5-MM	dataset with	or = 0.05	
			Dipole X	Dipole '	Y	Dipole Z	Magnitude		
		PointVector X-3D	0.9123±0.020 0.8818±0.001			754±0.0068 416±.0.0023	0.7397±0.046 0.6820±0.000		
ED5-OC	S The per						ICS dataset w	_	
			Accura	cv ROC-AU	C AU	PR F1.	Score		

Overall, results validate the effectiveness of using ED as a model input and demonstrate its utility in capturing physically meaningful patterns.

55.57±2.14 55.97±5.17 57.62±3.91 **66.96±2.08** 57.65±0.18 60.48±0.38 61.54±0.31 61.41±1.02

Results of EDBench on Retrieval Tasks

• ED5-MER

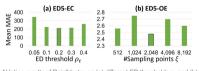
The strong performance of E+P and E+X demonstrates their potential for ED-based virtual screening and MS-based electronic-level molecular understanding.

The retrieval performance on ED5-MER


Results of EDBench on Generation Task

ED5-EDP The performance of HGEGNN on the ED generation of the ED5-EDP dataset. The unit of Time is second/mol

	$\rho_{ au}$	MAE	Pearson (%)	Spearman (%)	Time
HGEGNN	0.1	0.3362±0.2900	81.0±8.1	56.4±13.7	0.024
	0.15	0.0463 ± 0.0157	98.0 ± 6.3	87.0 ± 2.7	0.015
	0.2	0.0448 ± 0.0133	99.2 ± 0.8	91.0±9.1	0.013
DFT	-	-	-	-	245.8
DrI	-	-	-	-	


The results show that the HGEGNN (i) accurately and efficiently predicts ED, (ii) successfully captures key chemical features in high-density regions, and (iii) offers a powerful alternative to costly DFT calculations.

Quality analysis of ED outputs from the generation task

Model-generated ED produces superior downstream performance than DFT-calculated ED. This demonstrates that HGEGNN can create high-quality, machine-learning-friendly ED data for advancing molecular force field models.

Ablation study on thresholds and sampling points

Lower Threshold or More Points ≠ Better Performance. Striking a balance between accuracy and cost through hyperparameter tuning is key.

Ablation results of PointVector on (a) different ED thresholds ρ_{T} and (b) different numbers of sampling points ξ

References

[1] Xlang H, Li K, Liu M, Cheng Z, et al. EDBench: Large-Scale Electron Density Data for Molecular Modeling[C]//The Thirty-ninth Annual Conference on Neural Information Processing Systems Datasets and Benchmarks Track.

[2] Xiang H, Xia J, Jin X, et al. Electron density-enhanced molecular geometry learning[C]//Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence. 2025: 7840-7848.