Towards precision protein-ligand affinity prediction benchmark: A Complete and Modification-Aware DAVIS Dataset

Ming-Hsiu Wu¹, Ziqian Xie¹, Shuiwang Ji², Degui Zhi¹

¹McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA

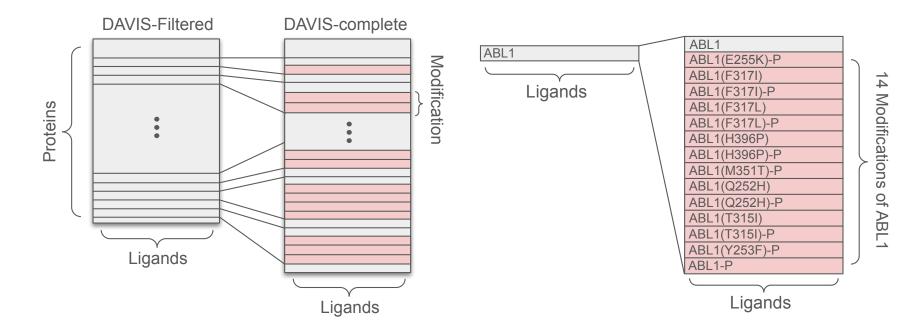
²Department of Computer Science and Engineering, Texas A&M University, USA

Background

Protein–ligand affinity modeling is limited by a lack of large, diverse, and experimentally homogeneous datasets that reflect real biology – especially protein modifications (substitutions, insertions, deletions, PTMs). Furthermore, most AI models focus on wild-type proteins or treat variants as equivalent (e.g., in **DAVIS**), leaving their ability to generalize to protein modifications largely unknown.

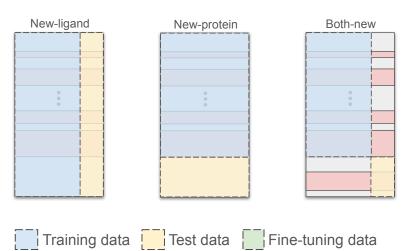
DAVIS-complete dataset

A curated, modification-aware version of the classic DAVIS kinase affinity dataset that now includes **4,032** additional kinase–ligand pairs covering substitutions, insertions, deletions, and phosphorylation across 56 modified sequences from 11 kinases.

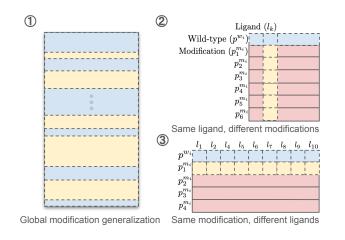


Benchmark Design

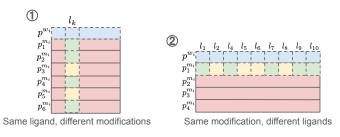
Augmented Dataset Prediction



Wild-Type to Modification Generalization



Few-Shot Modification Generalization



Benchmark result – Augmented Dataset Prediction

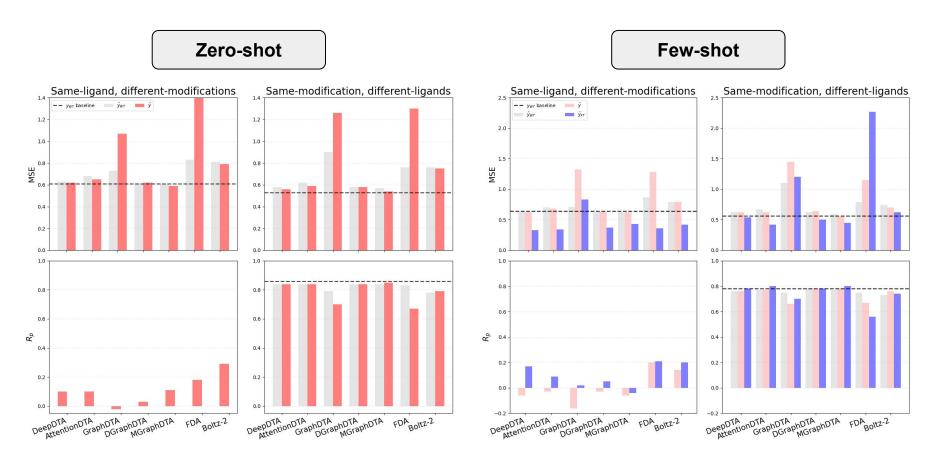
	New-ligand				New-protein						Both-new			
Model	Ligand-name		Ligand-structure		Protein-modification		Protein-name		Protein-seqid		Ligand-name & Protein-modification		Ligand-structure & Protein-seqid	
	MSE ↓	$R_p \uparrow$	MSE ↓	$R_p \uparrow$	MSE ↓	$R_p \uparrow$	MSE ↓	$R_p \uparrow$	MSE ↓	$R_p \uparrow$	MSE ↓	$R_p \uparrow$	MSE↓	$R_p \uparrow$
							Com	plete Test Set						
DeepDTA ¹	0.71 (0.11)	0.31 (0.05)	0.69 (0.08)	0.26 (0.07)	0.29 (0.03)	0.81 (0.02)	0.38 (0.06)	0.74 (0.04)	0.54 (0.12)	0.68 (0.02)	0.77 (0.12)	0.30 (0.04)	0.97 (0.14)	0.12 (0.10)
AttentionDTA ²	0.71 (0.09)	0.29 (0.09)	0.71 (0.10)	0.26 (0.07)	0.32 (0.03)	0.79 (0.02)	0.37 (0.04)	0.74 (0.02)	0.59 (0.15)	0.64 (0.04)	1.00 (0.18)	0.27 (0.10)	0.89 (0.13)	0.26 (0.10)
GraphDTA3	0.79 (0.14)	0.30 (0.11)	0.85 (0.15)	0.15 (0.11)	0.39 (0.05)	0.74 (0.02)	0.45 (0.06)	0.67 (0.06)	0.71 (0.13)	0.53 (0.06)	0.87 (0.15)	0.24 (0.09)	1.07 (0.27)	0.08 (0.15)
DGraphDTA4	0.71 (0.16)	0.22 (0.14)	0.76 (0.08)	0.10(0.10)	0.41 (0.05)	0.73 (0.02)	0.46 (0.06)	0.67 (0.03)	0.73 (0.11)	0.50 (0.06)	0.85 (0.13)	0.23 (0.05)	0.98 (0.17)	-0.05 (0.04)
MGraphDTA ⁵	0.68 (0.09)	0.34 (0.08)	0.80 (0.18)	0.28 (0.08)	0.32 (0.04)	0.79 (0.02)	0.39 (0.05)	0.72 (0.04)	0.63 (0.10)	0.60 (0.06)	0.81 (0.13)	0.33 (0.09)	0.97 (0.16)	0.15 (0.08)
FDA ⁶	0.60 (0.13)	0.42 (0.07)	0.66 (0.08)	0.36 (0.10)	0.33 (0.02)	0.78 (0.01)	0.36 (0.04)	0.75 (0.02)	0.49 (0.09)	0.70 (0.01)	0.59 (0.15)	0.48 (0.04)	0.89 (0.13)	0.28 (0.07)
Boltz-2 ⁷	0.47 (0.09)	0.61 (0.06)	0.50 (0.06)	0.57 (0.05)	0.31 (0.04)	0.80 (0.03)	0.36 (0.05)	0.75 (0.03)	0.47 (0.05)	0.74 (0.03)	0.45 (0.13)	0.63 (0.06)	0.62 (0.07)	0.58 (0.07)
							Wild	-type Subset						
DeepDTA	0.60 (0.09)	0.26 (0.06)	0.60 (0.07)	0.23 (0.08)	0.30 (0.03)	0.75 (0.01)	0.31 (0.03)	0.74 (0.03)	0.44 (0.06)	0.67 (0.03)	0.69 (0.14)	0.23 (0.06)	0.78 (0.13)	0.10 (0.08)
AttentionDTA	0.60 (0.08)	0.24 (0.08)	0.62 (0.09)	0.23 (0.05)	0.33 (0.03)	0.72 (0.01)	0.32 (0.02)	0.73 (0.01)	0.47 (0.09)	0.64 (0.04)	0.92 (0.16)	0.20 (0.11)	0.75 (0.14)	0.17 (0.08)
GraphDTA	0.66 (0.13)	0.27 (0.11)	0.73(0.14)	0.11(0.10)	0.38 (0.04)	0.68 (0.01)	0.38 (0.03)	0.66(0.03)	0.54 (0.05)	0.56(0.02)	0.74 (0.16)	0.19 (0.06)	0.90 (0.29)	0.03 (0.13)
DGraphDTA	0.58 (0.14)	0.20 (0.14)	0.66(0.07)	0.05 (0.09)	0.43 (0.05)	0.63 (0.02)	0.42 (0.04)	0.63(0.02)	0.61 (0.05)	0.49(0.02)	0.72 (0.14)	0.14 (0.08)	0.78 (0.14)	-0.05 (0.04)
MGraphDTA	0.58 (0.07)	0.30 (0.10)	0.69 (0.15)	0.23 (0.06)	0.34 (0.04)	0.72 (0.02)	0.34 (0.03)	0.71 (0.02)	0.51 (0.06)	0.60 (0.02)	0.68 (0.17)	0.26 (0.10)	0.79 (0.14)	0.12 (0.05)
FDA	0.53 (0.12)	0.35 (0.10)	0.59 (0.08)	0.30 (0.09)	0.32 (0.03)	0.72 (0.01)	0.31 (0.02)	0.74 (0.01)	0.41 (0.04)	0.69 (0.01)	0.53 (0.17)	0.38 (0.03)	0.76 (0.13)	0.21 (0.07)
Boltz-2	0.42 (0.08)	0.55 (0.07)	0.46 (0.07)	0.52 (0.05)	0.30 (0.04)	0.75 (0.03)	0.32 (0.03)	0.73 (0.02)	0.42 (0.04)	0.72 (0.02)	0.41 (0.15)	0.56 (0.09)	0.54 (0.06)	0.53 (0.07)
.5							Modif	ication Subse	t					
DeepDTA	1.52 (0.31)	0.30 (0.09)	1.34 (0.20)	0.25 (0.10)	0.21 (0.06)	0.94 (0.02)	0.79 (0.35)	0.70 (0.13)	0.88 (0.37)	0.66 (0.04)	1.35 (0.18)	0.37 (0.09)	1.67 (0.55)	-0.02 (0.20)
AttentionDTA	1.49 (0.29)	0.31 (0.17)	1.36 (0.27)	0.29 (0.14)	0.22 (0.08)	0.93 (0.02)	0.71 (0.13)	0.74 (0.07)	0.99 (0.33)	0.56 (0.15)	1.48 (0.47)	0.38 (0.20)	1.43 (0.41)	0.30 (0.15)
GraphDTA	1.67 (0.27)	0.25 (0.14)	1.66 (0.22)	0.12 (0.14)	0.47 (0.18)	0.86 (0.04)	0.87 (0.34)	0.65 (0.15)	1.15 (0.31)	0.43 (0.17)	1.74 (0.30)	0.24 (0.12)	1.74 (0.61)	0.03 (0.28)
DGraphDTA	1.63 (0.38)	0.18 (0.18)	1.47 (0.25)	0.12 (0.11)	0.25 (0.13)	0.93 (0.03)	0.81 (0.28)	0.73 (0.10)	1.21 (0.41)	0.45 (0.23)	1.76 (0.34)	0.27 (0.06)	1.64 (0.47)	-0.12 (0.08)
MGraphDTA	1.43 (0.26)	0.36 (0.09)	1.56 (0.53)	0.29 (0.18)	0.22 (0.07)	0.93 (0.02)	0.73 (0.23)	0.72 (0.10)	1.12 (0.29)	0.52 (0.25)	1.64 (0.46)	0.38 (0.16)	1.61 (0.54)	0.13 (0.16)
FDA	1.11 (0.23)	0.53 (0.07)	1.15 (0.23)	0.45 (0.13)	0.39 (0.08)	0.88 (0.02)	0.71 (0.16)	0.74 (0.07)	0.74 (0.26)	0.71 (0.03)	0.95 (0.16)	0.60 (0.06)	1.37 (0.29)	0.32 (0.10)
Boltz-2	0.87 (0.14)	0.70 (0.05)	0.77 (0.13)	0.67 (0.07)	0.36 (0.05)	0.89 (0.02)	0.63 (0.15)	0.76 (0.08)	0.65 (0.22)	0.74 (0.07)	0.75 (0.15)	0.73 (0.05)	0.95 (0.25)	0.61 (0.09)

¹(Öztürk et al., 2018), ²(Zhao et al., 2023), ³(Nguyen et al., 2020), ⁴(Jiang et al., 2020), ⁵(Yang et al., 2022), ⁶(Wu et al., 2025), ⁷(Passaro et al., 2025)

Red: Best, Blue: Second Best

Ligand-name: no ligand name overlaps between training and test sets; **Ligand-structure**: ligands in the test set have a Tanimoto similarity ≤ 0.5 (computed using Morgan fingerprints) to any ligand in the training set; **Protein-modification**: treating different modification variants of the same kinase as distinct unseen proteins (e.g., training on ABL1(Q252H) and testing on ABL1(T315I)); **Protein-name**: excluding all variants (including wild-type) of a protein from the test set if any variant appears in training; **Protein-seqid**: ensuring that kinases in the training set share ≤ 50% sequence identity with any kinase in the test set.

Benchmark result – WT-Modification Generalization



Conclusion

- Based on experiment results, no model can effectively distinguish wild-type and modification proteins.
- Docking-based models show better generalizability in zero-shot scenarios, while docking-free methods tend to overfit to wild-type proteins.
- Few-shot fine-tuning can effectively improve docking-free models performance.