

CLEAR: Command Level Annotated Dataset for Ransomware Detection

Barak Bringoltz, Elisha Halperin, Ran Feraru, Evgeny Blaichman, Amit Berman

Samsung Semiconductor Israel Research and Development Center

Motivation – Ransomware Detection

Major cybersecurity threat to organizations worldwide

Active research challenge

No publicly available datasets currently provide per-command labeling

Contribution

Presents the largest dataset to date - 1,045 TiB of data and 137 ransomware variants

Enhances per-command labeling to distinguish ransomware from benign

Auxiliary features derived from the data improve (1-AUC) by up to 30%

Contribution

Raw Data

Old Labeling

New Attributes

New Labeling

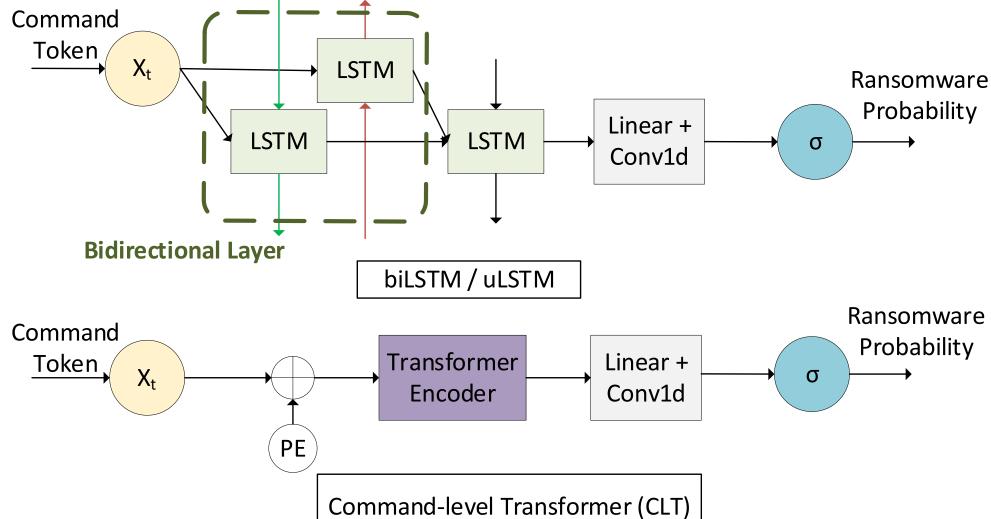
Timestamp	OpCode	Offset	Size		
89	Read	600000	256		
91	Write	600250	512		
•					
605	Read	620170	256		

Chunk Label

Higher-level Auxiliary **Semantics** Process ID=4 0 OVwaR=6 Process ID=4 Process ID=9 0

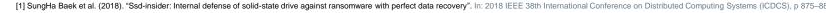
Command Label 0 0

Key Benefits of the Dataset



- Enables per-command sequential models that outperform SoTA
- Presents a benchmark for out-of-distribution model performance

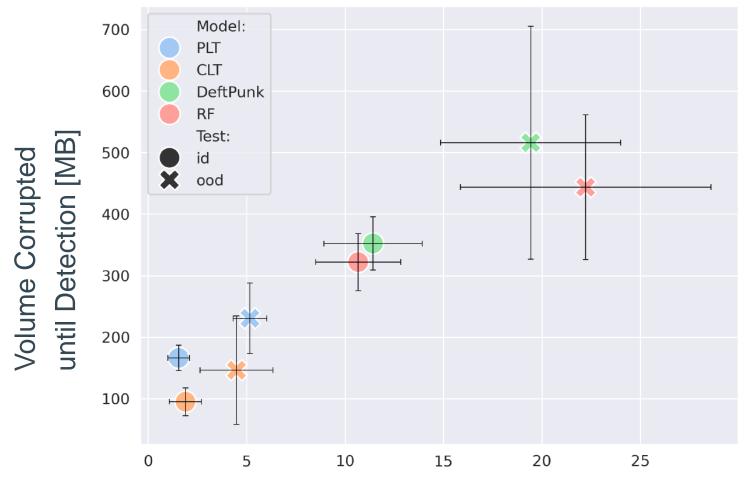
Command Based Models


Results

Model	Missed Ransomware Volume [%]	Volume Corrupted Until Detection [MB]	Per- Command Labeling
Random Forest	9.07 ± 1.8	286 ± 33	
DeftPunk [2]	6.74 ± 1.2	282 ± 34	V
UNET	1.34 ± 0.4	195 ± 41	X
Patch Level Transformer	1.16 ± 0.2	157 ± 18	
Command Level Transformer	1.42 ± 0.4	77 ± 10	
biLSTM	1.24 ± 0.3	76 ± 07	✓
uLSTM	0.36 ± 0.1	50 ± 03	
	/	\	

~3.14x gain

~3.24x gain



^[2] Zhongyu Wang et al. (2024). "Ransom access memories: Achieving practical ransomware protection in cloud with DeftPunk". In: 18th USENIX Symposium on Operating Systems Design and Implementation (OSDI 24), pages 687–702

Unseen Ransomware Benchmark

