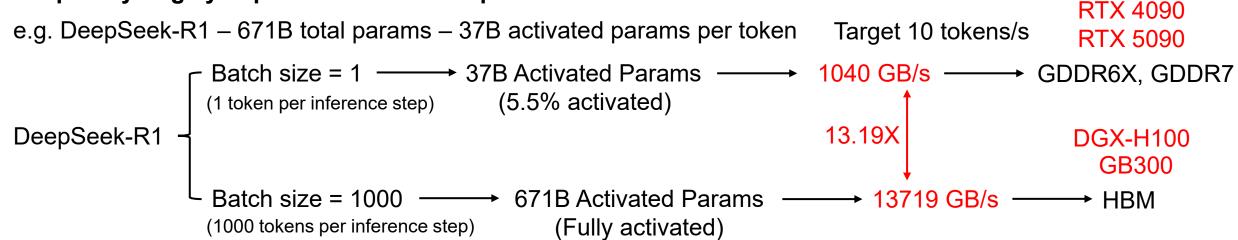


MoE-CAP: Benchmarking Cost, Accuracy and Performance of Sparse Mixture-of-Experts Systems


Yinsicheng Jiang^{* 1}, Yao Fu^{* 1}, Yeqi Huang^{* 1}, Ping Nie³, Zhan Lu¹, Leyang Xue¹, Congjie He¹, Man-kit Sit¹, Jilong Xue², Li Dong², Ziming Miao², Dayou Du¹, Tairan Xu¹, Kai Zou⁴, Edoardo Ponti^{1 5}, Luo Mai¹

University of Edinburgh¹, Microsoft Research², Peking University³, NetMind.Al⁴, NVIDIA⁵

Challenges for Deploying MoE Systems

What is MoE system? MoE system is software that incorporates specific optimizations for MoE inference: - Expert Parallelism, Quantization, Expert offloading (from GPU VRAM to CPU DRAM), ...

1. Sparsity largely impacts bandwidth requirements for inference

2. Too many deployment scenarios

- single-user vs. multi-user
- small vs. large batch sizes

Seeking benchmarks to answer this question

Given a model and a deployment scenario, what is the most suitable hardware and MoE system?

Existing Benchmarks Limitations

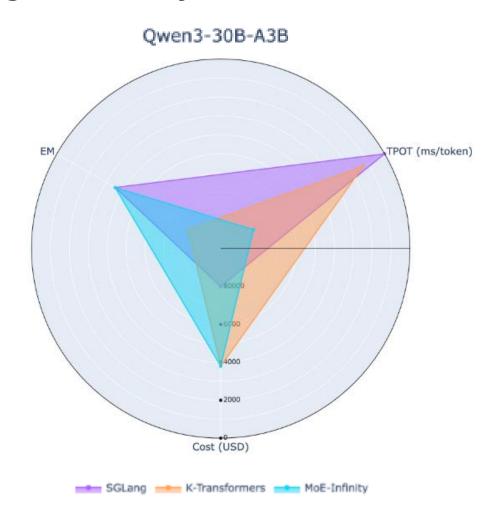
Inadequate insights to guide hardware selection and further optimization

- Open-LLM-Leaderboard
 - Accuracy, CO₂ Cost
 - No system performance reported
- LLM-Perf, Artificial Analysis, MLPerf
 - Prefill latency, Decoding throughput, Energy usage, Accuracy
 - Lack insights for hardware utilization and MoE system further improvement
- Databricks benchmark, LLM-Viewer
 - MBU (Model Bandwidth Utilization), MFU (Model FLOPS Utilization), Roofline model
 - Inaccurate for MoE systems.

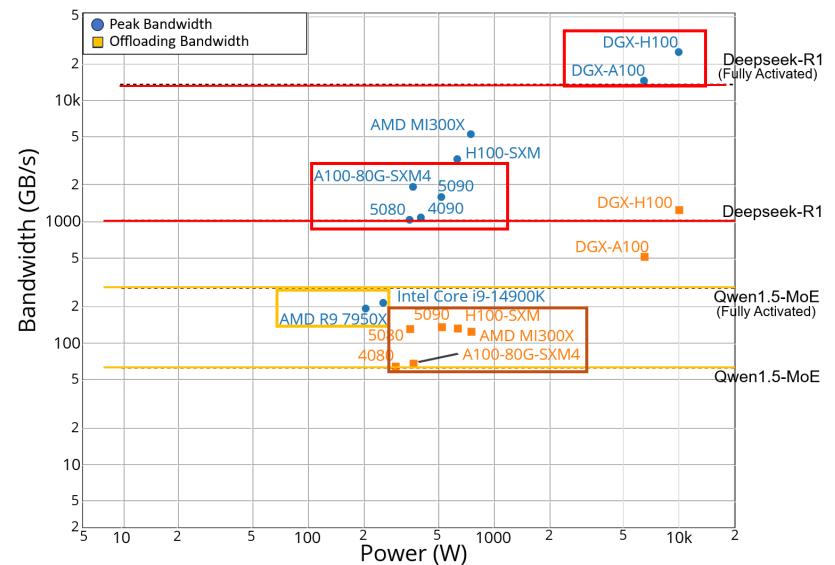
Our Contributions

We are the first to introduce CAP benchmarking for MoE systems

How to classify current MoE systems?


- PA systems (Expert Parallelism)
- PC systems (Quantization)
- CA systems (Offloading)

How to measure accurate hardware utilization for MoE systems?


- S-MFU (Sparse Model FLOPS Utilization)
- S-MBU (Sparse Model Bandwidth Utilization)

How to visualize the benchmark?

CAP Radar diagram

Benchmark and Takeaways

MoE systems enable a broader range of devices to perform inference.

- Personal machines can serve large MoE models at small batch size

Hybrid computing will become more prevalent.

- CPU matrix computation capabilities are increasing and DRAM can be easily scaled.

MoE systems should be co-designed to align with specific applications and deployment scenarios.

New benchmarking and design principles are needed for emerging sparse Al systems.

- MoE is not everything for sparse Al systems. What about sparse KV Cache?

Epilogue

MoE-CAP can

- Offer accurate hardware utilization metrics
- Guide further improvements in the system efficiency
- Help choose the best hardware based on the use case for cost savings
- Analyze the trade-off of Cost, Accuracy and Performance among different MoE systems

More details of MoE-CAP, please refer to our paper and code:

https://arxiv.org/abs/2412.07067

https://github.com/sparse-generative-ai/MoE-CAP

Let's work together to enhance MoE efficiency!