

HO-Cap: A Capture System and Dataset for 3D Reconstruction and Pose Tracking of Hand-Object Interaction

Jikai Wang¹ Qifan Zhang¹ Yu-Wei Chao² Bowen Wen² Xiaohu Guo¹ Yu Xiang¹

¹The University of Texas at Dallas, ²NVIDIA

Data Capture Setup

- Multi-view
 Cameras
- Calibration & Synchronization

Annotation

- 3D Object Reconstruction
- Object Pose Estimation
- Hand Pose Estimation
- Joint Hand-Object Pose Optimization

Dataset

- Dataset Statistics
- Annotation Types

Baseline

- Hand Pose Estimation
- Object Detection
- Object Pose Estimation

Annotation

Dataset

Baseline

Mulit-View + Egocentric Capture Setup

■ Hardware Configuration

- > 8× Intel RealSense D455 cover the entire workspace from multiple angles.
- > 1× Azure Kinect provides high-resolution depth for detailed 3D reconstruction.
- > 1× HoloLens 2 records egocentric RGB-D data for first-person analysis.

☐ Calibration & Fusion

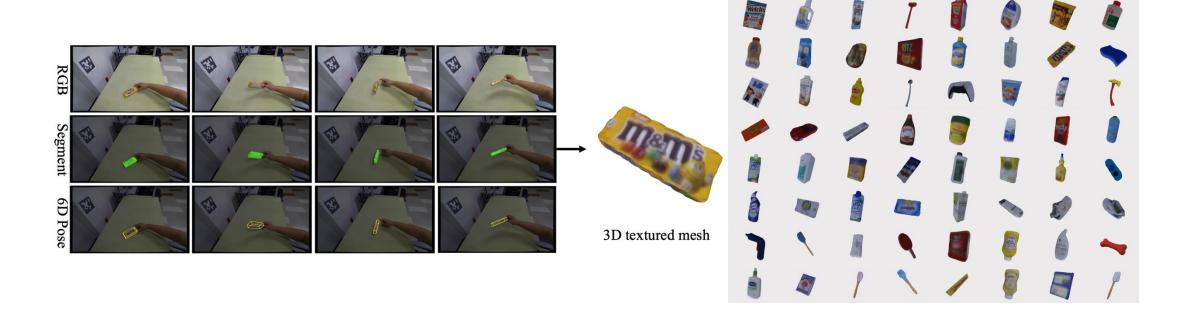
- > All RealSense cameras are extrinsically calibrated.
- Head poses are directly obtained from the HoloLens.
- > Streams are .synchronized by timestamps and fused into a single world frame

Annotaation

Dataset

Baseline

3D Object Reconstruction (BundleSDF)



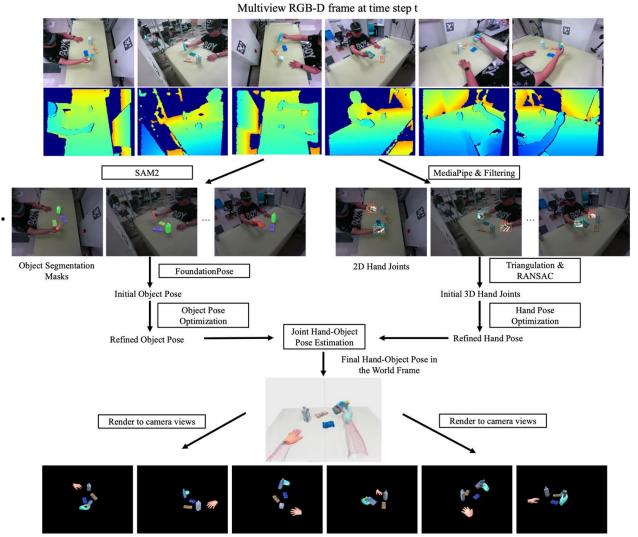
Annotation

Dataset

Baseline

Annotation Pipeline

We propose a semi-automatic annotation pipeline leverages large pre-trained models along with SDF-based optimization, requiring only minimal manual initialization.



Annotaation

Dataset

Baseline

Stage One: Initial Object Poses and 3D Hand Joints Estimation

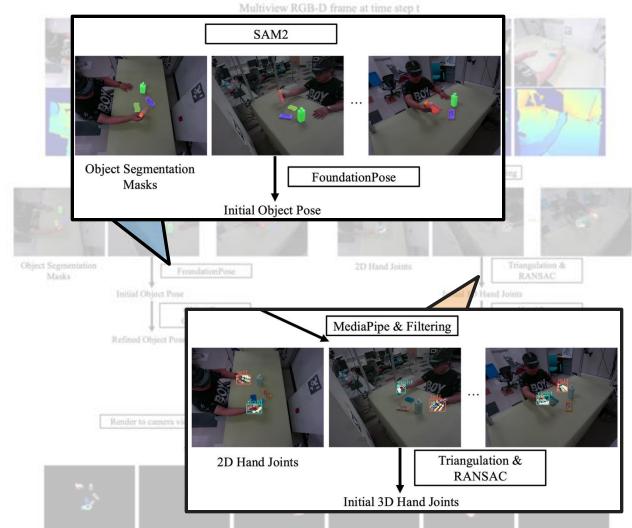
Object
Segmentation
(SAM2)

FoundationPose
Initial Object Pose

2D Hand Joints (MediaPipe)

Triangulation & RANSAC

3D Hand Joints



Annotaation

Dataset

Baseline

Stage Two: Refined Hand and Object Poses

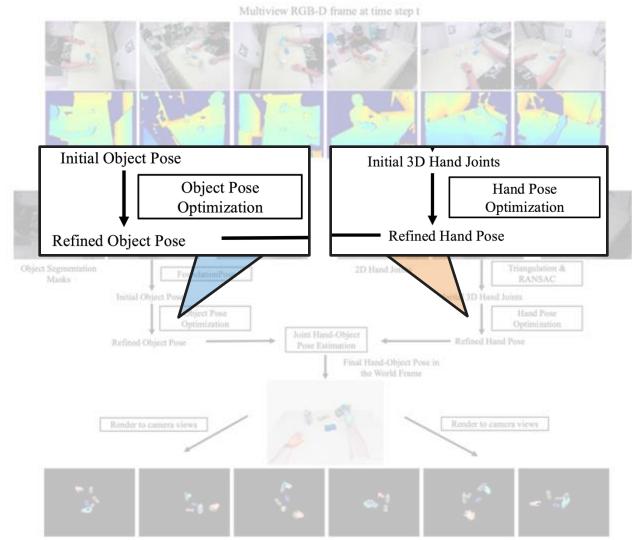
Initial Object SDF Based Pose Optimization

Refined Object Pose

3D Hand Joints

MANO model fitting

Refined Hand Pose



Annotation

Dataset

Baseline

Final Hand and Object Poses

Refined Object Pose

Joint Pose Optimization

Refined Hand Pose

Dataset Statistics

- ☐ 9 Camera, 9 Subjects, 64 Unique Objects, 64 Video Sequences, 3 Tasks
- ~ 656K Markerless RGB-D Frames

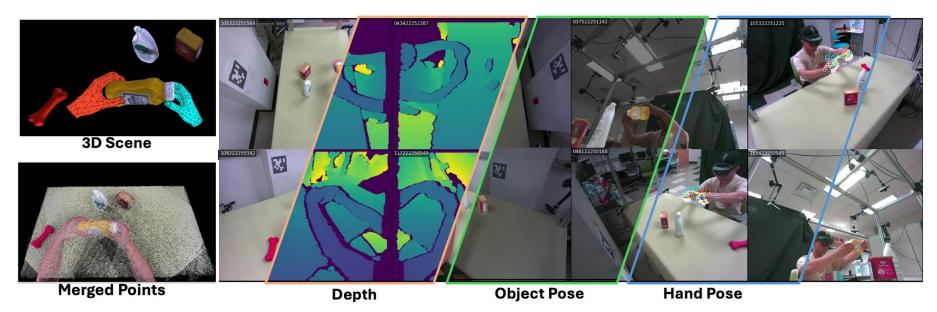
Annotation

Dataset

Baseline

Annotation Types

- ☐ MANO-based 3D Hand Pose, 6D Object Poses, 2D Hand Joint Keypoints, 6D Head Poses
- ☐ Hand and Object Segmentation Masks



Annotation

Dataset

Baseline

Benchmarks & Baselines

We provide a benchmark with baseline results for:

- ☐ Hand Pose Estimation
- Object Detection
- Object Pose Estimation

Table 4: Evaluation of hand pose estimation. The numbers in parentheses denote the thresholds used for PCK, and the unit of MPJPE is millimeters (mm).

Method	PCK(0.05) ↑	PCK(0.1) ↑	PCK(0.15) ↑	PCK(0.2) ↑	MPJPE (mm) ↓
A2J-Transformer [25]	12.1	26.8	39.4	50.5	78.7
InterWild [37]	51.7	60.9	70.0	78.6	57.6
HaMeR [42]	43.7	79.2	88.5	91.4	28.9

Table 5: Evaluation of object detection. Results are reported as mean Average Precision (AP) under different IoU thresholds and object scales. Marker * denotes models trained on our dataset.

Method	AP	\mathbf{AP}_{50}	\mathbf{AP}_{75}	\mathbf{AP}_S	\mathbf{AP}_M	\mathbf{AP}_L
CNOS [40]	25.3	27.9	24.8	1.6	27.6	24.9
GroundingDINO [32]	17.0	27.6	21.5	1.4	24.3	7.5
YOLO11* [26]	71.4	85.9	78.7	20.7	75.2	72.6
RT-DETR* [59]	75.9	90.0	83.4	21.1	79.8	84.8

Table 6: Evaluation of object pose estimation for novel objects. Results are reported as the Area Under the Curve (AUC, %) of the ADD and ADD-S metrics on all 64 objects in our dataset.

Method	ADD (%)	ADD-S (%)
MegaPose [29]	67.1	83.0
FoundationPose [52]	89.3	95.7

Annotation

Dataset

Baseline

Conclusion

- Multi-view, Markerless 3D hand-object Capture.
- Scalable Semi-automatic Annotation Method.
- Physically consistent hand-object poses.
- Enables Research in 3D Perception, Pose Estimation, and Robot Learning.

Project Website: https://irvlutd.github.lo/HOCap

