

TaiwanVQA: Benchmarking and Enhancing Cultural Understanding in Vision-Language Models

Hsin-Yi Hsieh¹⁵ Shang-Wei Liu¹ Chang-Chih Meng² Chien-Hua Chen² Shuo-Yueh Lin³ Hung-Ju Lin⁴ Hen-Hsen Huang⁵ I-Chen Wu²

¹National Center for High-performance Computing ²National Yang Ming Chiao Tung University ³National Central University ⁴National Taiwan University ⁵Institute of Information Science, Academia Sinica

Motivation

- Most VLM benchmarks focus on dominant languages and cultures
- Limited evaluation of localized or Taiwan-specific content
- VLMs often recognize objects but miss cultural meaning
- → Need benchmarks that capture cultural reasoning and adaptation

Global / Common Food

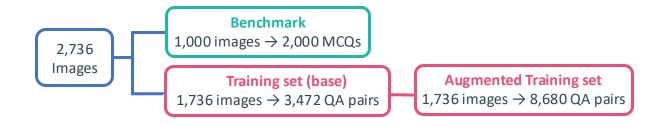
VS.

Local / Cultural Food

Hamburger

挫冰 (Taiwanese shaved ice)

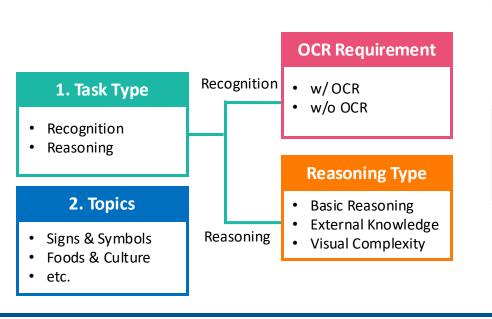
traditional summer dessert made of finely shaved ice topped with boba, beans, jellies, or condensed milk.


What We Do in This Paper

- Build TaiwanVQA, the first benchmark for evaluating Taiwanese cultural understanding in VLMs
- Provide a generalizable taxonomy separating recognition and reasoning tasks
- Define **structured annotation rules** for consistent, culturally rich data
- Conduct comprehensive evaluation on 12 SOTA VLMs (e.g., Gemini-2.5, InternVL3)
- Demonstrate culture-aware fine-tuning that substantially narrows reasoning gaps

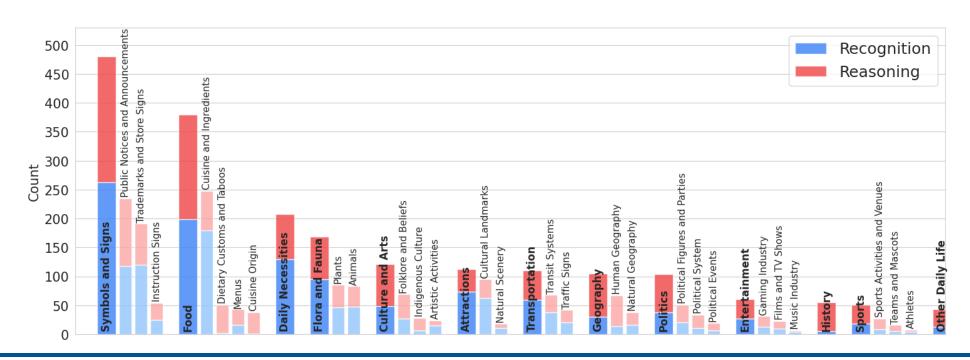
Dataset Taxonomy Evaluation Fine-tuning

Dataset Overview


- Each image includes two human-annotated MCQs —
 one for Recognition (object or OCR understanding) and one for Reasoning (cultural meaning or symbolism)
 - Benchmark: 1,000 images, 2,000 MCQs used only for evaluation.
 - Training set: 1,736 images → 3,472 human QA pairs, later augmented to 8,680 QA pairs.

Data Split	Purpose	images	Question Type	Total Questions
Benchmark	Evaluation only	1,000	2 MCQs per image (1 Recognition + 1 Reasoning)	2,000
Training (Augmented)	Training	1,736	5 QA pairs per image	8,680

Taxonomy


- Task Type: Recognition | Reasoning
- OCR Requirements (for Recognition): with / without Traditional Chinese text
- Reasoning Type (for Reasoning): Basic | External Knowledge | Visual Complexity
- Topic Classification: 13 cultural topics, expanded into 27 fine-grained subtopics

Topic Distribution

- Dataset covers 13 topics and 27 subtopics, reflecting Taiwan's cultural, social, and linguistic diversity.
- Recognition and Reasoning questions are balanced across domains, allowing fair evaluation.

Data Collection & Quality

Annotation Process

- Annotators: 9 contributors with diverse educational and regional backgrounds.
- Calibration: 1-week training using shared examples to unify question style and cultural tone.
- Peer Review: Each QA pair reviewed by a second annotator.
- Lead Adjudication: Final quality checks by senior reviewers.

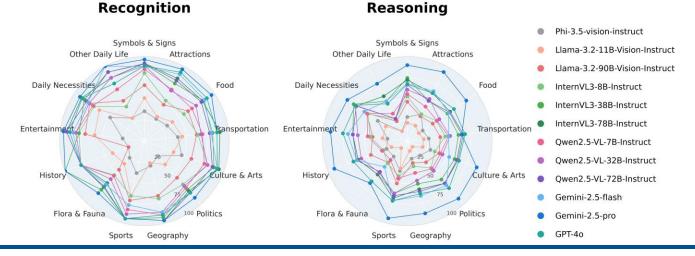
Quality Assurance

- Agreement: > 95% inter-annotator agreement on answers and tags.
- Audit: 10% random rechecks.
- **Scope:** Only public, culture-related images no PII or sensitive content.

Training Data Augmentation Pipeline

- Step 1. Image Captioning: Qwen2-VL generates captions for each image.
- Step 2. Dialogue Generation: GPT-4o creates 3 QA types per image:
 - Visual Conversation: overall visual context
 - Attribute Recognition: key attributes of the object
 - Contextual Inference: situational or functional reasoning
- Outcome: From 2 → 5 questions per image (8,680 total)

Data Source	Total	Source
Seed QA pairs	3,472	Human
Visual Conversation Attribute Recognition Contextual Inference	1,736	Generated Generated Generated
Total	8,680	Mixed


Experimental Setup & Results MCQ Evaluation

Evaluation Setup

- Format: Zero-shot MCQ with CircularEval¹ over shuffled options.
- **Models:** 12 VLMs, open (e.g., InternVL3, Qwen2.5-VL, LLaMA-3.2-Vision) and proprietary (Gemini-2.5, GPT-4o).

Key Findings

- Overall trend: Proprietary models lead; all show Recognition > Reasoning.
- OCR items are usually easier than non-OCR reasoning items.
- **Takeaway:** Cultural reasoning remains the key bottleneck in vision-language understanding.

Original Question

請問照片拍攝的是以下哪種台灣小吃? (Which Taiwanese snack is shown in the photo?)

- 蚵仔煎 (Oyster Omelette)
- 地瓜球 (Sweet Potato Balls)
- 牛肉湯 (Beef Soup)
- D. 蚵仔麵線 (Oyster Vermicelli) Answer: D

Four Iterations with Circular Shifts:

- 1: A. 蚵仔煎 B. 地瓜球 C. 牛肉湯 D. 蚵仔麵線 → Answer: D
- 2: A. 地瓜球 B. 牛肉湯 C. 蚵仔麵線 D. 蚵仔煎 → Answer: C
- 3: A. 牛肉湯 B. 蚵仔麵線 C. 蚵仔煎 D. 地瓜球 → Answer: B
- 4: A. 蚵仔麵線 B. 蚵仔煎 C. 地瓜球 D. 牛肉湯 → Answer: A

CircularEval example

Experimental Setup & ResultsOpen-Ended QA Evaluation

Evaluation Setup

- Format: Open-ended answers in Traditional Chinese; no multiple-choice options.
- Scoring: GPT-4.1 as judge model to evaluate semantic similarity between model output and reference answer.

Key Findings

- Performance gap: Accuracy drops 10–20 points compared with MCQ.
- Where it hurts: Reasoning questions with external knowledge or symbolic meaning show largest declines.
- Takeaway: Open-QA exposes hidden weaknesses in knowledge retrieval and cultural grounding.

Model	MCQ		Open-QA						
	All	Recog.	Reason.	All	Δ	Recog.	Δ	Reason.	Δ
Phi-3.5-Vision	31.05	35.20	26.90	10.20	-20.85	12.70	-22.50	7.70	-19.20
Llama-3.2-11B	32.35	45.60	19.10	31.60	-0.75	39.00	-6.60	24.20	+5.10
Llama-3.2-90B	51.50	62.70	40.30	40.70	-10.80	49.80	-12.90	31.60	-8.70
InternVL3-8B	55.15	67.60	42.70	43.55	-11.60	55.30	-12.30	31.80	-10.90
InternVL3-38B-Instruct	74.10	85.30	62.90	51.80	-22.30	65.50	-19.80	38.10	-24.80
InternVL3-78B-Instruct	75.80	86.50	65.10	53.10	-22.70	65.90	-20.60	40.30	-24.80
Qwen2.5-VL-7B	59.75	74.10	45.40	50.70	-9.05	64.30	-9.80	37.10	-8.30
Qwen2.5-VL-32B-Instruct	65.65	77.70	53.60	55.85	-9.80	66.80	-10.90	44.90	-8.70
Qwen2.5-VL-72B-Instruct	73.35	84.60	62.10	58.35	-15.00	70.00	-14.60	46.70	-15.40
Gemini-2.5-flash	72.80	84.20	61.40	66.80	-5.80	76.40	-7.80	57.20	-24.70
Gemini-2.5-pro	89.35	93.40	85.30	71.90	-17.45	79.50	-13.90	64.30	-21.00
GPT-4o	77.40	87.30	67.50	67.40	-10.00	77.50	-9.80	57.30	-10.20

Fine-Tuning Results

Training Setup

- Base Model: Llama-3.2-11B-Vision-Instruct
- Data: 8,680 TaiwanVQA QA pairs (training split)
- Variants:
 - Base: Original, non-fine-tuned model
 - Human: Fine-tuned on *human-annotated* seed data (3,472)
 - Mixed: Fine-tuned on both human and augmented data
- Benchmarks: TaiwanVQA (cultural) + MMMU

Key Findings

- Mixed fine-tuning yields the best cultural gains (+15–20 pts).
- Maintains general performance.

		Llama-3.2-11B			
		base	human	mix	
TaiwanVQA	Recognition	45.6	51.6	61.0	
	Reasoning	19.1	27.0	36.4	
MMMU	Valid	37.7	43.7	42.8	
	Pro-standard	28.0	30.4	31.7	
	Pro-vision	5.6	11.2	13.0	

Key Takeaways

- TaiwanVQA offers a systematic, scalable framework for evaluating cultural understanding in VLMs.
- Cultural reasoning remains the primary bottleneck.
- Open-QA evaluation exposes hidden failures in knowledge retrieval and grounding that MCQs overlook.
- Lightweight fine-tuning on culture-specific data significantly improves reasoning while preserving general performance.
- Enables low-resource, reproducible cultural adaptation across domains.