

GC4NC: A Benchmark Framework for Graph Condensation on Node Classification with New Insights

Shengbo Gong*, Juntong Ni*, Carl Yang, Wei Jin

Noveen Sachdeva

Google DeepMind

Background

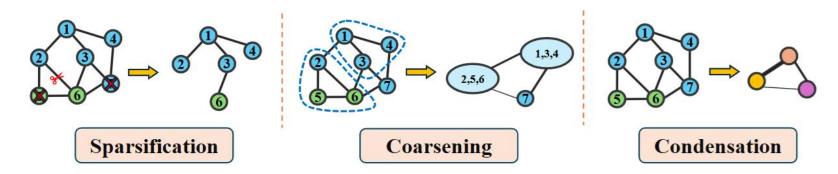


Figure 2: Illustration of key differences among three strategies of graph reduction: Graph sparsification selects significant nodes and edges while discarding others, graph coarsening groups and aggregates similar nodes and edges to construct a smaller graph, and graph condensation learns a synthetic graph from scratch.

- Large graph datasets are challenging. Graph condensation enables GNN to preserve the performance with a smaller graph.
- Many papers discussed the potential of robustness and privacy application but never verified.
- Unified protocols are needed.

Benchmark design

- Focus on Node Classification task
 - as over 90% of GC papers work on it
- Three stages: initialization, training, evaluation

- Unified approach for fair comparison
 - fix the frequency of intermediate validation
 - fix the downstream GCN hyperparameters

Benchmark design

- Comprehensive baselines
 - Trajectory-matching (TM)
 - Distribution-matching (DM)
 - Gradient-matching (GM)
- Multifaceted evaluation
 - Transferability
 - Initialization (connected to graph reduction methods)
 - NAS (Neural Architecture Search)
 - robustness, privacy, and graph property (new!)

Observations: Performance and Efficiency

			Conde	nsation				
TA	TM DM GM							Whole
GEOM	SFGC	GCDM	GCondX	GCond	DosCond	MSGC	SGDD	
67.61	66.27	70.65	67.79	70.05	69.41	60.24	71.87	
70.70	70.27	$\overline{71.27}$	69.69	$\overline{69.15}$	70.83	72.08	70.52	72.6
73.03	<u>72.36</u>	72.08	68.38	69.35	72.18	72.21	69.65	
78.14	75.11	79.21	79.74	80.17	80.65	80.54	80.15	
82.29	79.55	80.26	78.67	80.81	80.85	80.98	80.29	81.5
82.82	80.54	80.68	78.60	80.54	<u>81.15</u>	80.94	81.04	
69.64	67.61	77.62	72.03	77.36	58.13	75.25	78.11	
76.21	66.89	76.63	72.05	78.05	52.70	78.26	78.07	78.6
78.49	67.61	77.48	71.97	76.46	76.45	78.20	75.95	
64.91	64.91	60.04	59.40	60.49	55.70	57.66	58.50	
68.78	66.58	60.59	62.46	63.88	57.39	64.85	59.18	71.4
69.59	$\overline{67.03}$	60.71	59.93	64.23	61.06	65.73	63.76	

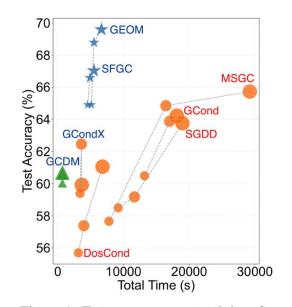
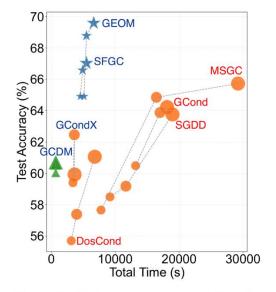


Figure 1: Test accuracy vs. total time for *structure-free* and *structure-based* condensation methods on Arxiv. TM is represented by \bigstar , GM by \bullet , and DM by \blacktriangle . Marker sizes increase with reduction rates of 0.05%, 0.25%, and 0.50%.

• TM-based methods excel in condensation performance but lack efficiency.

Observations: Performance and Efficiency

				nsation	Conde					
Whole			GM		TM DM					
-	SGDD	MSGC	DosCond	GCond	GCondX	GCDM	SFGC	GEOM		
	71.87	60.24	69.41	70.05	67.79	70.65	66.27	67.61		
72.6	70.52	72.08	70.83	$\overline{69.15}$	69.69	71.27	70.27	70.70		
	69.65	72.21	72.18	69.35	68.38	72.08	72.36	73.03		
	80.15	80.54	80.65	80.17	79.74	79.21	75.11	78.14		
81.5	80.29	80.98	80.85	80.81	78.67	80.26	79.55	82.29		
	81.04	80.94	81.15	80.54	78.60	80.68	80.54	82.82		
	78.11	75.25	58.13	77.36	72.03	77.62	67.61	69.64		
78.6	78.07	78.26	52.70	78.05	72.05	76.63	66.89	76.21		
	75.95	78.20	76.45	76.46	71.97	77.48	67.61	78.49		
	58.50	57.66	55.70	60.49	59.40	60.04	64.91	64.91		
71.4	59.18	64.85	57.39	63.88	62.46	60.59	$\overline{66.58}$	68.78		
	63.76	65.73	61.06	64.23	59.93	60.71	67.03	69.59		



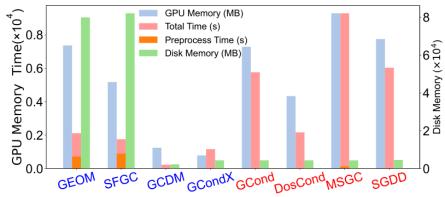


Figure 1: Test accuracy vs. total time for *structure-free* and *structure-based* condensation methods on Arxiv. TM is represented by \bigstar , GM by \bullet , and DM by \blacktriangle . Marker sizes increase with reduction rates of 0.05%, 0.25%, and 0.50%.

Structure-free methods are more efficient than structure-based ones.

Observations: Performance and Efficiency

				nsation	Conde			
Whole			GM	DM	1	TA		
_	SGDD	MSGC	DosCond	GCond	GCondX	GCDM	SFGC	GEOM
	71.87	60.24	69.41	70.05	67.79	70.65	66.27	67.61
72.6	70.52	72.08	70.83	$\overline{69.15}$	69.69	$\overline{71.27}$	70.27	70.70
	69.65	72.21	72.18	69.35	68.38	72.08	72.36	73.03
	80.15	80.54	80.65	80.17	79.74	79.21	75.11	78.14
81.5	80.29	80.98	80.85	80.81	78.67	80.26	79.55	82.29
	81.04	80.94	81.15	80.54	78.60	80.68	80.54	82.82
	78.11	75.25	58.13	77.36	72.03	77.62	67.61	69.64
78.6	78.07	78.26	52.70	78.05	72.05	76.63	66.89	76.21
	75.95	78.20	76.45	76.46	71.97	77.48	67.61	78.49
	58.50	57.66	55.70	60.49	59.40	60.04	64.91	64.91
71.4	59.18	64.85	57.39	63.88	62.46	60.59	$\overline{66.58}$	68.78
	63.76	65.73	61.06	64.23	59.93	60.71	$\overline{67.03}$	69.59

Figure 2: Comparison of GPU memory, disk memory, preprocess time, and total time on Arxiv (r = 0.5%).

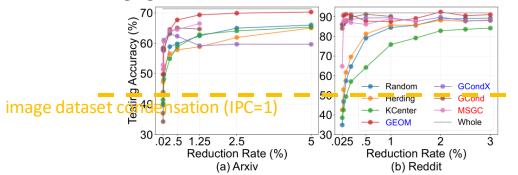


Figure 3: Varying reduction rates on Arxiv and Reddit. No mark represents OOM when the reduction rate is too large for a method.

GC outperforms image dataset condensation at the extremely low reduction rate.

Observations: Privacy Protection

MIA Acc: Membership Inference Attack, MIA Acc reflects the probability that an adversary (confidence threshold) can correctly identify whether a node belongs to the training set.

Methods	Cora, r	= 2.6%	Citeseer,	r = 1.8%	Arxiv, $r = 0.5\%$		
	MIA Acc (↓)	Acc (†)	MIA Acc (↓)	Acc (†)	MIA Acc (↓)	Acc (↑)	
Whole	74.87 ± 1.16	81.50 ± 0.50	81.76 ± 1.01	72.61 ± 0.27	54.26 ± 0.11	71.43 ± 0.11	
					53.04 ± 0.18		
GCondX	66.83 ± 0.81	78.60 ± 0.31	71.97 ± 0.58	68.38 ± 0.45	54.64 ± 0.17	59.93 ± 0.54	
DosCond	69.70 ± 0.50	81.15 ± 0.50	74.33 ± 0.34	72.18 ± 0.61	54.04 ± 0.79	61.06 ± 0.59	
SGDD	70.43 ± 1.63	81.04 ± 0.54	77.07 ± 4.32	69.65 ± 1.68	53.29 ± 0.46	63.76 ± 0.22	
GDEM	60.66 ± 1.26	81.76 ± 0.53	70.01 ± 2.94	71.74 ± 0.90	-	-	
GEOM	67.90 ± 0.55	82.82 ± 0.17	67.55 ± 0.62	73.03 ± 0.31	53.80 ± 0.19	69.59 ± 0.24	
					54.49 ± 0.53		

• TM and eigen-decomposition methods balance privacy and performance.

Observations: Robustness and Denoising Ability

Adversarial Structural Noise: We employ PR-BCD, a scalable adversarial noise using Projected Gradient Descent.

_		Featur	e Noise	Structu	ral Noise	Adversarial Structural Noise		
Dataset	Method	Test Acc. ↑	Perf. Drop ↓	Test Acc. ↑	Perf. Drop ↓	Test Acc. ↑	Perf. Drop↓	
	Whole	64.07	11.75%	57.63	20.62%	53.90	25.76%	
Citeseer 1.8%	GCond	64.06	7.63%	65.64	5.35%	66.19	4.55%	
	GCondX GEOM	61.27 58.77	10.40% 19.53%	$\frac{60.42}{51.41}$	11.65% 29.60%	$\frac{60.75}{57.94}$	11.15% 20.67%	
	Whole	74.77	8.26%	72.13	11.49%	66.63	18.24%	
Cora 2.6%	GCond	67.62	16.04%	63.14	21.61%	68.90	14.45%	
Cora 2.0 %	GCondX GEOM	67.72 49.68	13.85% 40.01%	63.95 53.59	18.63% 35.29%	$\frac{69.24}{66.32}$	11.91% 19.93%	
	Whole	46.68	1.51%	42.60	10.13%	44.44	6.24%	
Flickr 1%	GCond GCondX GEOM	46.29 45.60 45.38	1.49% 2.11% 1.63%	46.97 46.19 45.52	0.04% 0.83% 1.32%	43.90 42.00 44.72	6.58% 9.83% 3.06 %	

• Structure-based approaches offer superior robustness.

Observations: Graph Properties Preservation

Supervised DBI (Davies-Bouldin Index) measures the quality of a **class** by evaluating the average similarity between each class and its most similar class

Graph Property		VNG	GCond	MSGC	SGDD	Avg. Whole
Density% (Struc.)	<i>Cora</i> Corr.	52.17 -0.81	82.28 0.07	22.00 0.55	100.00 0.13	64.11 0.14
Max Eigenvalue (Spectra)	<i>Cora</i> Corr.	3.73 0.85	34.90 0.25	1.69 0.95	14.09 0.28	13.60 169.01 0.58 -
DBI (Label & Feature)	<i>Cora</i> Corr.	3.69 0.81	1.84 0.93	0.70 0.94	4.34 0.97	2.64 9.28 0.91 -
DBI-AGG (Label & Feat. & Stru.)	<i>Cora</i> Corr.	3.59 0.99	$0.38 \\ 0.93$	0.57 0.95	0.18 0.89	1.18 4.67 0.94 -
Homophily (Label & Struc.)	<i>Cora</i> Corr.	0.14 -0.83	0.16 -0.68	0.19 -0.46	0.13 -0.80	0.16 0.81 -0.69 -

• Node and aggregated features are preserved in condensed graphs.

10

Observations: Graph Properties Preservation

Table 17: Correlation between condensed graph properties and model performance.

	VNG	GCond	MSGC	SGDD	Correlation
Avg ACC	63.34	69.40	69.02	68.95	-
Density (%)	-0.81	0.07	0.55	0.13	0.91
Max Eigen	0.85	0.25	0.95	0.28	-0.51
DBI	0.81	0.93	0.94	0.97	0.96
DBI-AGG	0.99	0.93	0.95	0.89	-0.80
Homophily	-0.83	-0.68	-0.46	-0.80	0.54

Preserving Density%, DBI tends to be beneficial for downstream tasks.

Observations: Transferability and Initialization

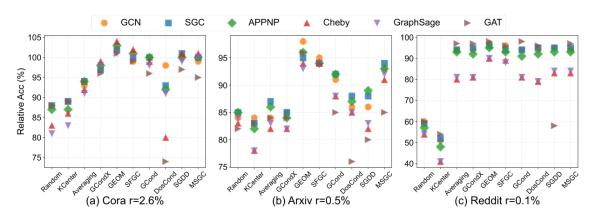


Figure 4: Condensed graph performance evaluated by different GNNs. The **relative accuracy** refers to the accuracy preserved compared to training on the whole dataset.

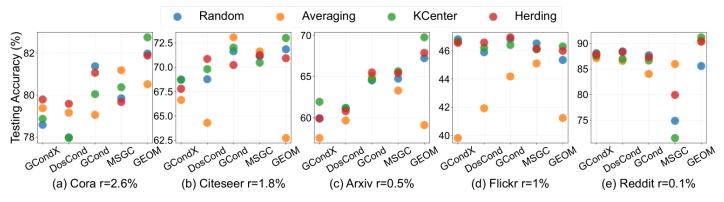


Figure 5: Test accuracy for different methods with different initialization.

 GC methods vary in transferability across datasets.

 Current initialization strategies lack consistent impact.

Observations: NAS

Recall: how many of the G top-K architectures also appear in the top K on the G'

Top 1: the performance of the G' top 1 architecture on the G

Table 13: Recall@K of top-K architectures evaluated on Cora with r = 0.5.

	Random	K-Center	GCondX	SFGC	GEOM	GCond	DosCond	MSGC
Recall@5	0.0	0.0	0.2	0.0	0.2	0.0	0.0	0.0
Recall@10	0.0	0.0	0.2	0.1	0.2	0.2	0.1	0.1
Recall@20	0.4	0.35	0.5	0.45	0.4	0.45	0.25	0.4

	Random	K-Center	GCondX	SFGC	GEOM	GCond	DosCond	MSGC	Whole
Top 1 (%)	81.88	81.74	81.49	82.42	82.19	81.82	81.91	82.40	82.51
Acc. Corr.	0.56	0.47	0.40	0.72	0.65	0.70	0.14	$\overline{0.71}$	_
Rank Corr.	0.64	0.60	0.57	0.71	<u>0.74</u>	0.66	0.20	$\overline{0.78}$	_

• TM or inner optimization (like GCondX, GCond) is key for NAS effectiveness.

Conclusions

• First benchmark for GC methods with multi-dimension evaluation.

Novel insights on privacy, robustness and graph properties.

Inspires future directions for better performance and scalability.

Toolkit

 Run Graph Condensation with 3 lines of code and evaluate with another 2!

```
from graphslim.dataset import *
from graphslim.evaluation import *
from graphslim.condensation import GCond
from graphslim.config import cli

args = cli(standalone_mode=False)
args.reduction_rate = 0.5
args.device = 'cuda:0'
graph = get_dataset('cora', args=args)
agent = GCond(setting='trans', data=graph, args=args)
reduced_graph = agent.reduce(graph, verbose=True)
evaluator = Evaluator(args)
res_mean, res_std = evaluator.evaluate(reduced_graph, model_type='GCN')
```


https://github.com/Emory-Melody/GraphSlim

THANK YOU