

RDB2G-Bench: A Comprehensive Benchmark for Automatic Graph Modeling of Relational Databases

Dongwon Choi

Sunwoo Kim

Juyeon Kim

Kyungho Kim

Geon Lee

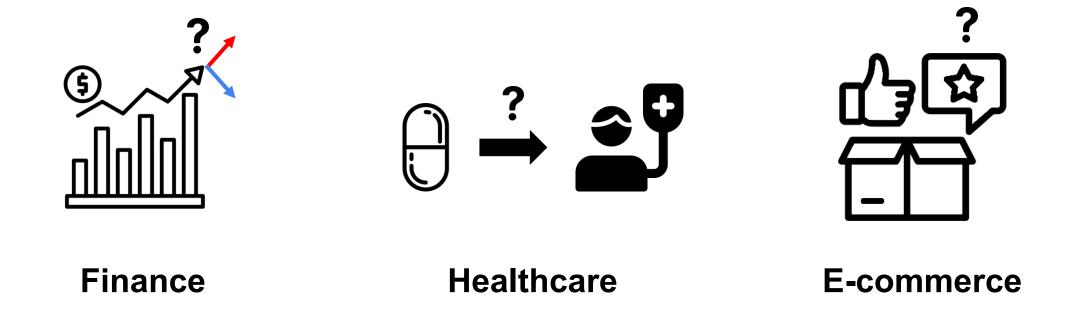
Shinhwan Kang

Myunghwan Kim

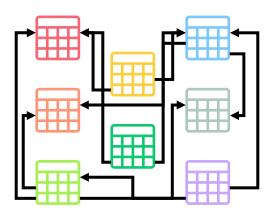
Kijung Shin

About RDB-to-Graph modeling

Relational Databases (RDBs) have various industrial applications.

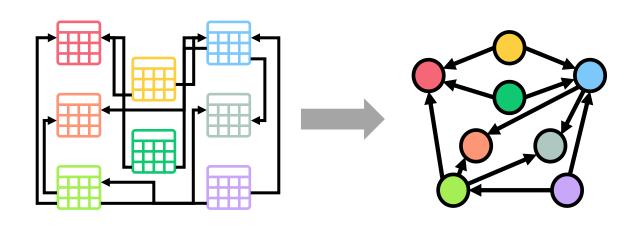


Recent advances leverage graph-based ML for RDB prediction tasks.



RDB schema

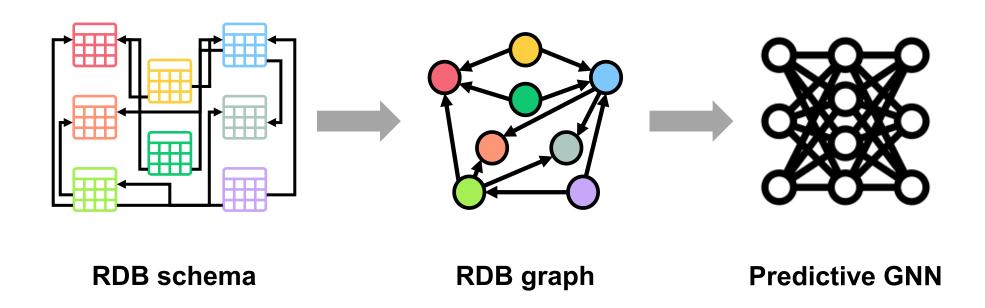
- Recent advances leverage graph-based ML for RDB prediction tasks.
 - Table rows as nodes and foreign-key (FK) relations as edges.



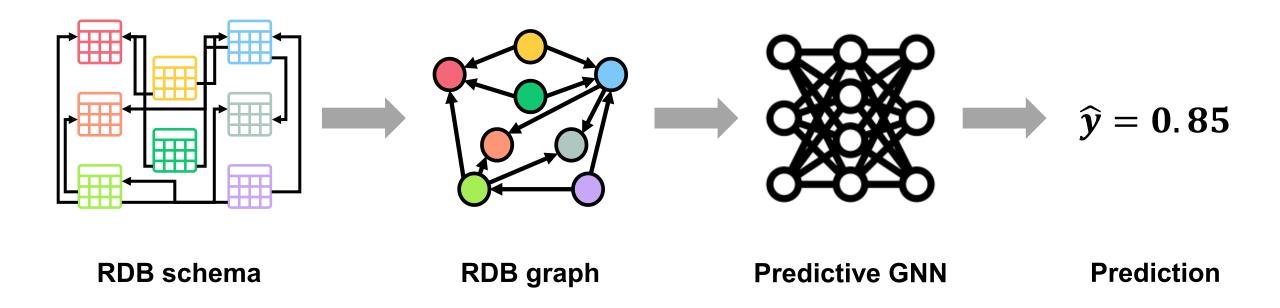
RDB schema

RDB graph

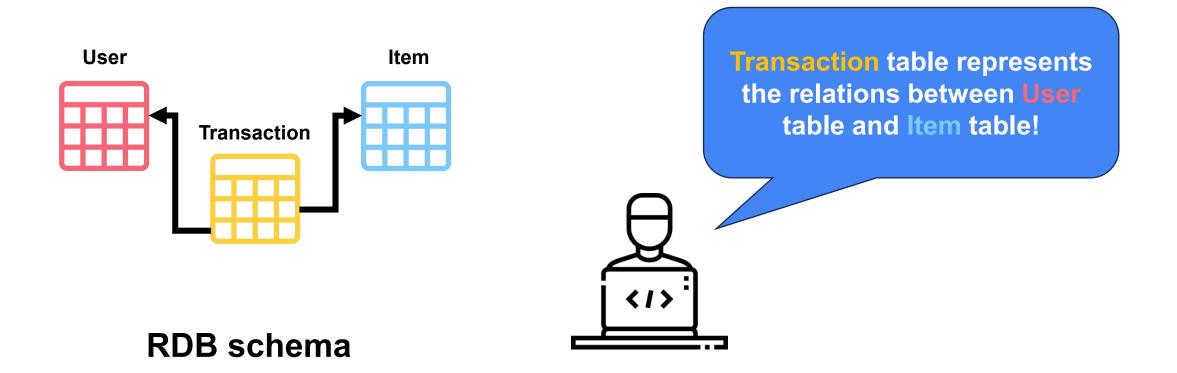
- Recent advances leverage graph-based ML for RDB prediction tasks.
 - By using Graph Neural Networks (GNNs), we can get a final prediction.



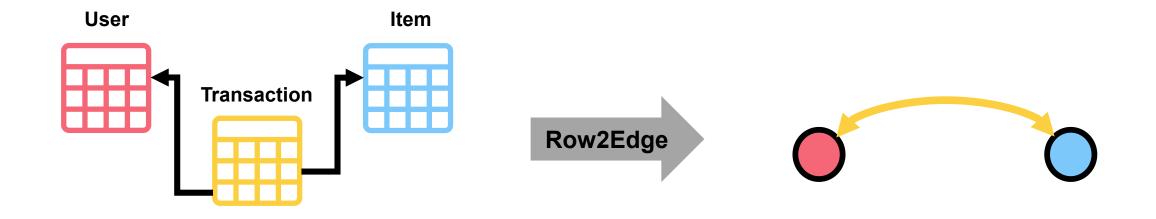
- Recent advances leverage graph-based ML for RDB prediction tasks.
 - By using Graph Neural Networks (GNNs), we can get a final prediction.



Option 1. Some table rows can be modeled as edges between tables.



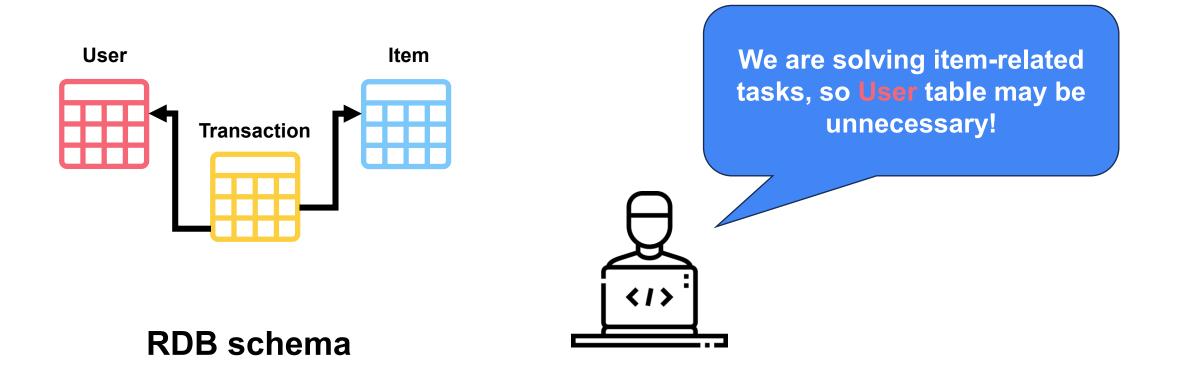
Option 1. Some table rows can be modeled as edges between tables.



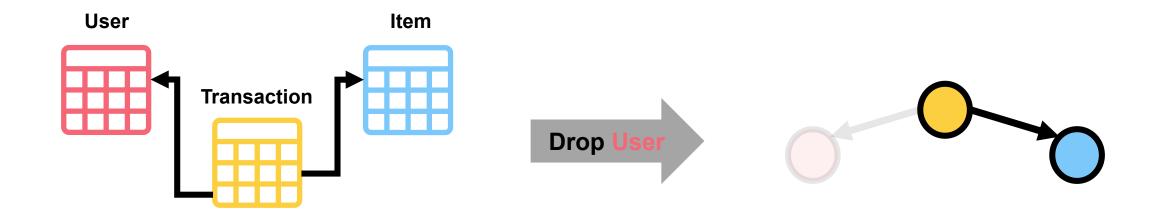
RDB schema

RDB Graph

Option 2. We can choose only a subset of tables and FK relations.



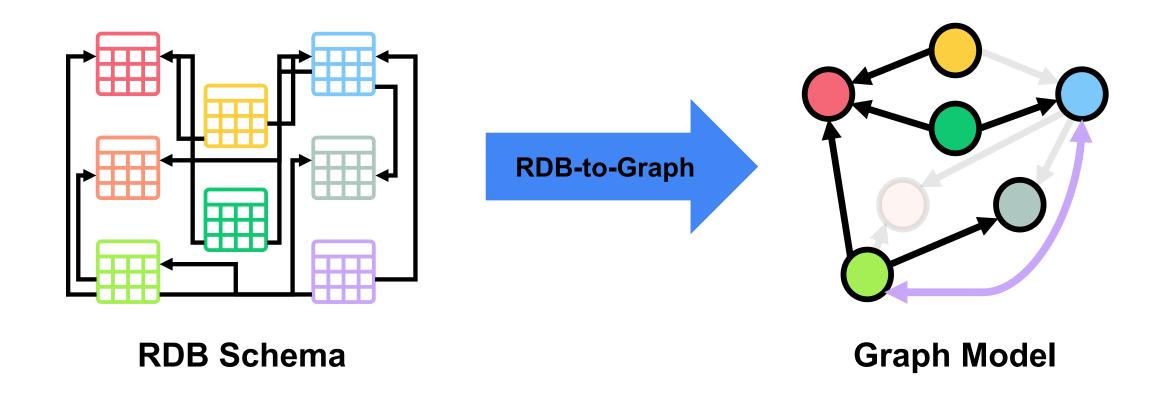
Option 2. We can choose only a subset of tables and FK relations.



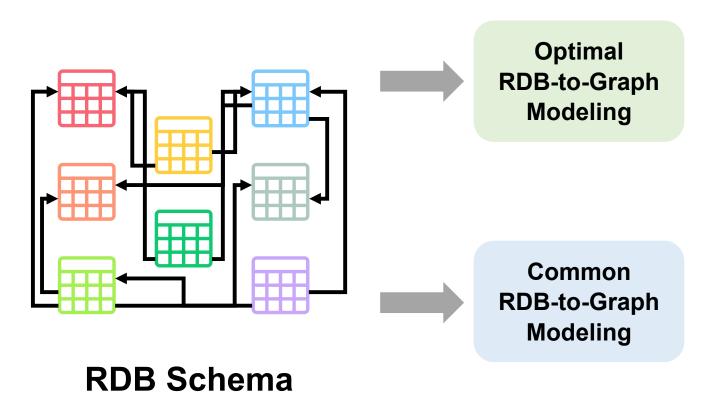
RDB schema

RDB graph

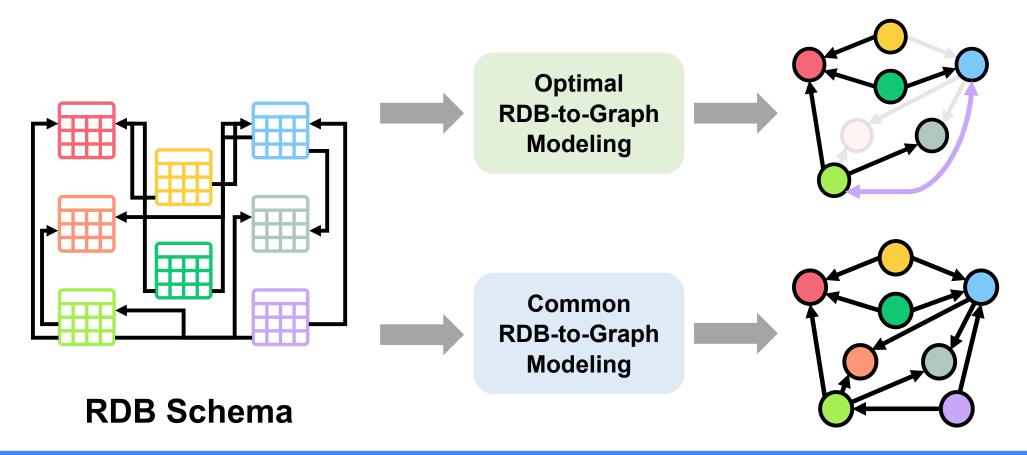
• RDB-to-Graph modeling aims to find a graph model (i.e., graph representation of RDB) to maximize the performance of the predictive GNN on the given task.



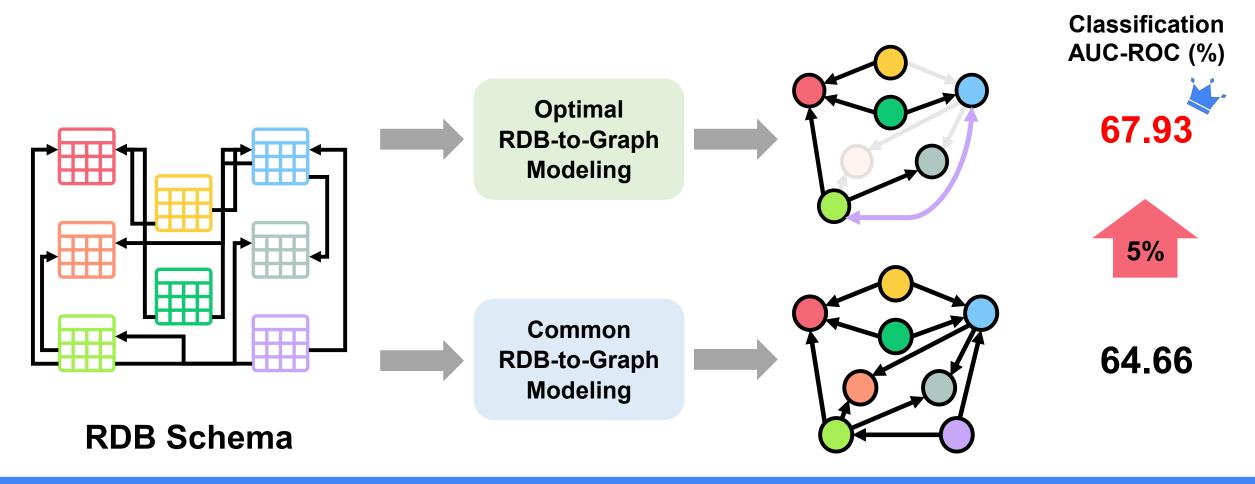
Careful RDB-to-Graph modeling is crucial in practice.



• Careful RDB-to-Graph modeling is crucial in practice.

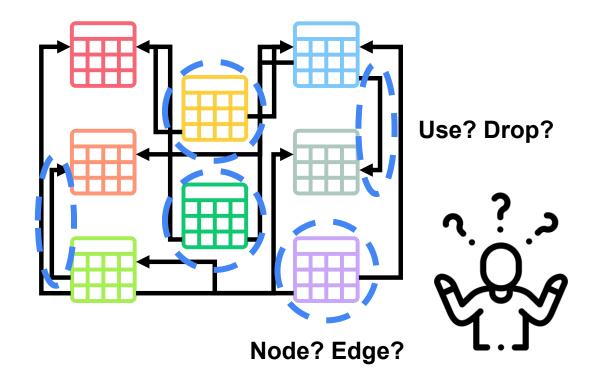


• Careful RDB-to-Graph modeling is crucial in practice.



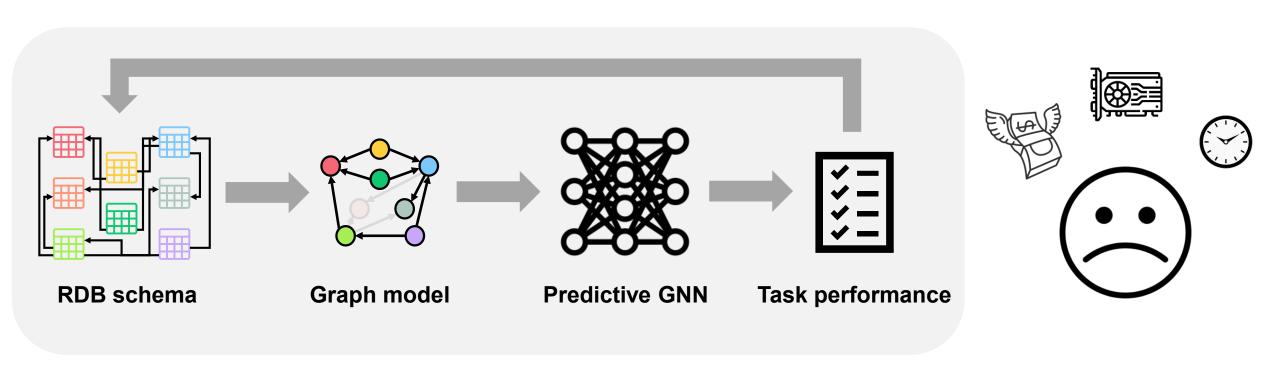
Challenges in RDB-to-Graph Modeling

However, there are numerous possible graph models.



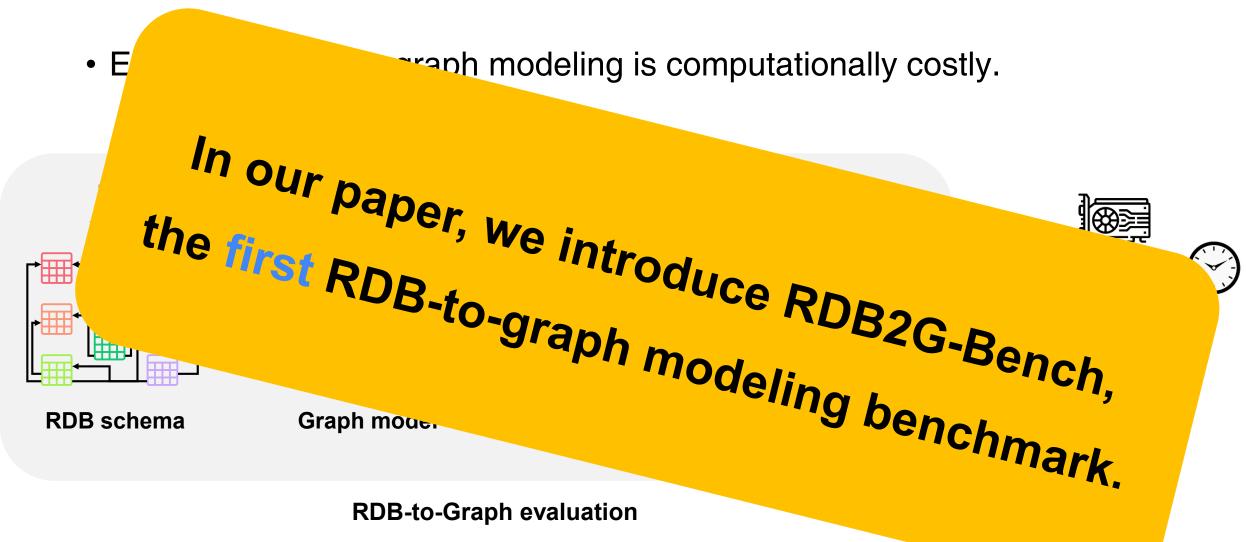
Challenges in RDB-to-Graph Modeling (cont.)

• Evaluating RDB-to-graph modeling is computationally costly.



RDB-to-Graph evaluation

Challenges in RDB-to-Graph Modeling (cont.)

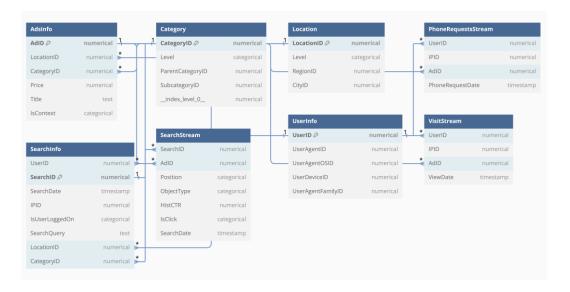


Roadmap

- Overview
- Dataset for RDB2G-Bench
- Benchmark for RDB2G-Bench
- Conclusions

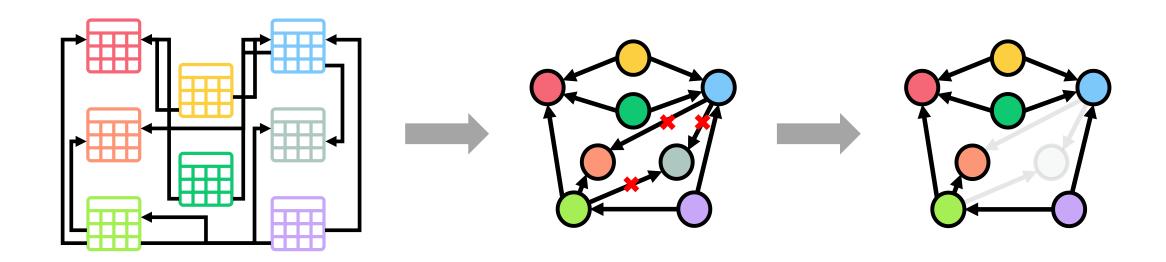
Dataset designs of RDB2G-Bench

 Our RDB2G-Bench datasets were created based on 5 real-world RDBs and 12 predictive tasks provided in RelBench.

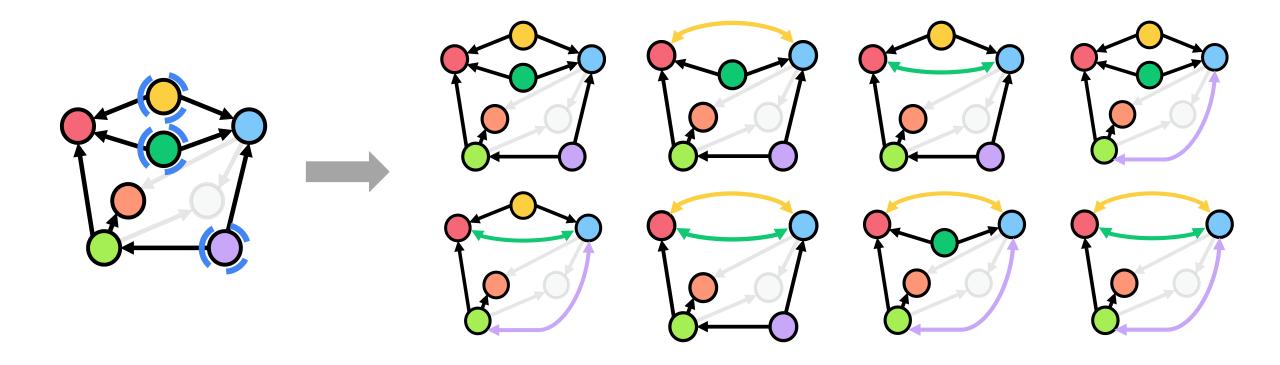


Example schema (rel-avito)

• Step 1. Selecting which tables and FK relationships to include in the graph models.



• Step 2. Selecting how to represent the rows of each table, as either nodes or edges, in the graph.



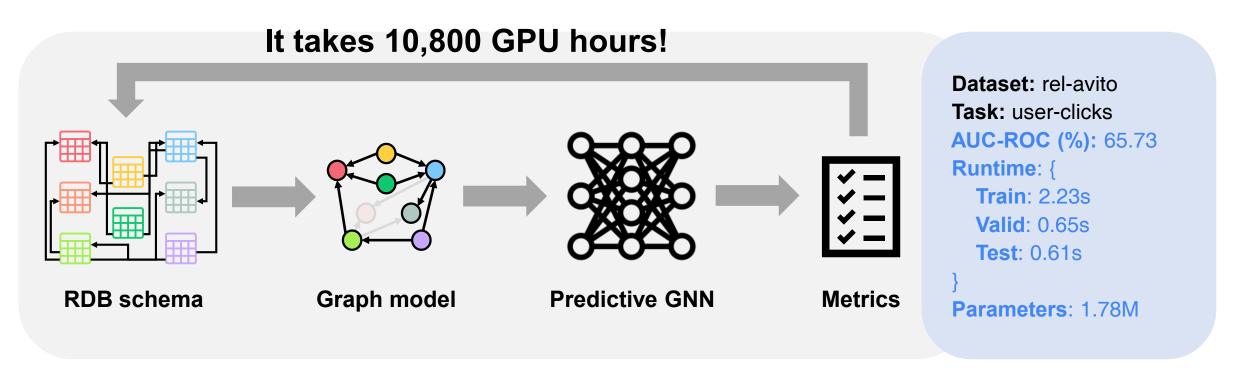
• By doing so, we constructed about 50k distinct graph models.

RDB	Task Name	Туре	# Tables	# Graph Models		ormance Stat AR2N [29]	
rel-avito	user-clicks (UC) user-visits (UV) ad-ctr (AC) user-ad-visit (UAV)	classification classification regression recommendation	8	944 944 1304 909	67.93 66.33 0.039 3.682	64.66 65.97 0.040 3.661	60.89 59.83 0.044 0.159
rel-event	user-repeat (UR) user-ignore (UI) user-attendance (UA)	classification classification regression	5	214 214 214	82.29 82.82 0.237	77.65 82.22 0.244	63.96 74.29 0.266
rel-f1	driver-dnf (DD) driver-top3 (DT) driver-position (DP)	classification classification regression	9	722 722 722	74.56 81.88 3.831	73.14 78.11 3.913	67.40 75.37 4.171
rel-stack	post-post-related (PPL)	recommendation	7	7979	12.04	10.82	0.006
rel-trial	study-outcome (SO)	classification	15	36863	70.91	68.09	62.85

≈50k!

For each constructed graph model, we collected predictive

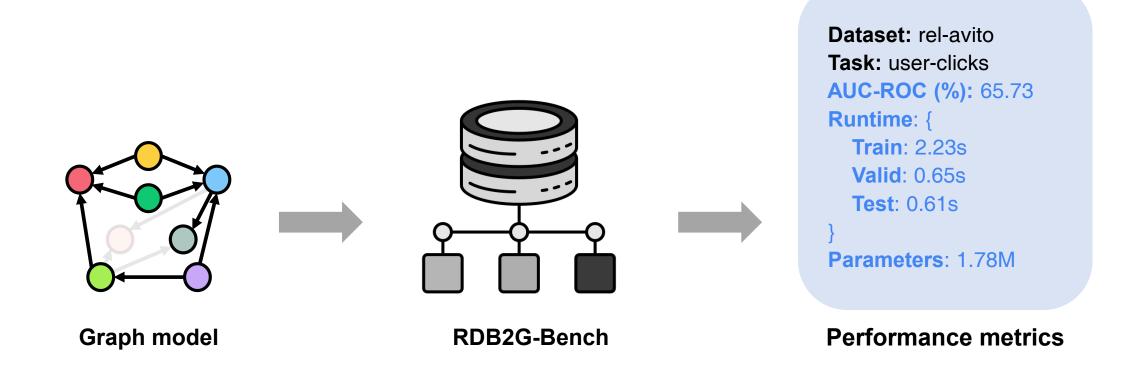
performance, runtime, and parameter size



RDB-to-Graph evaluation

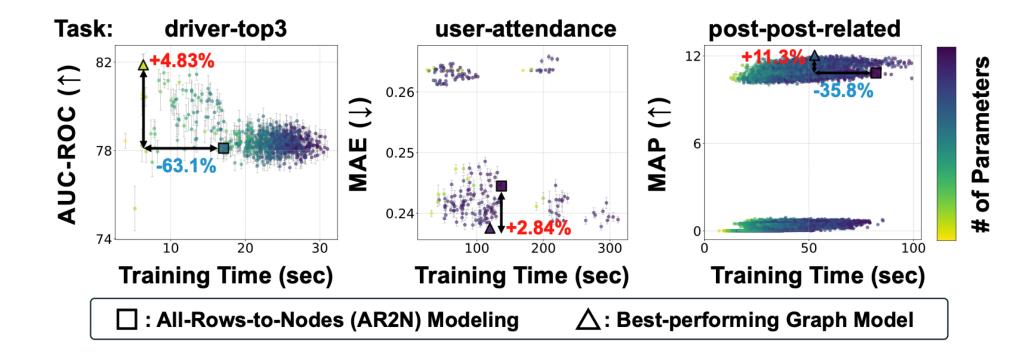
Performance metrics

• We can get the given graph model's performance immediately by looking up RDB2G-Bench datasets, without costly evaluations.

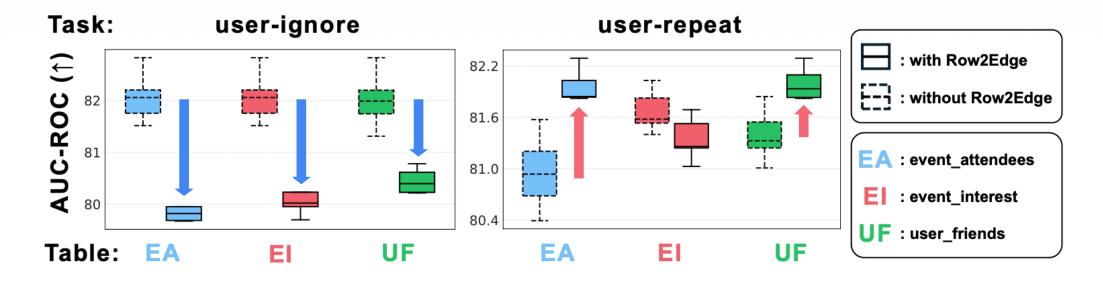


Observations from datasets

Observation 1. Finding the best graph model is worthwhile.

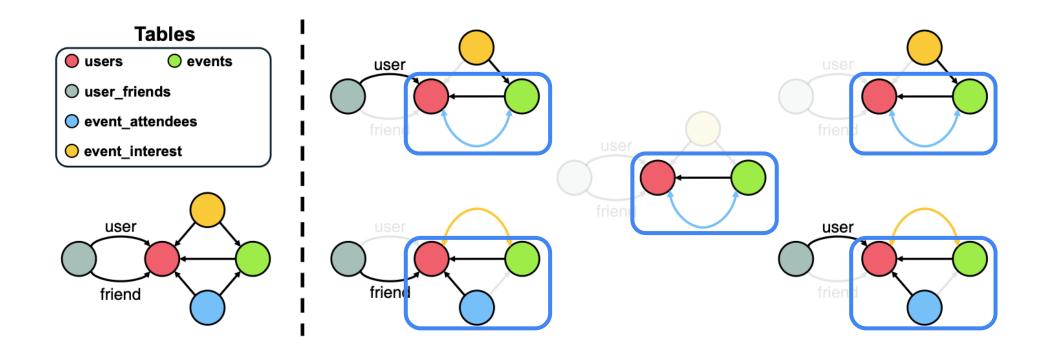


Observation 2. Modeling rows as edges (Row2Edge) can be crucial.

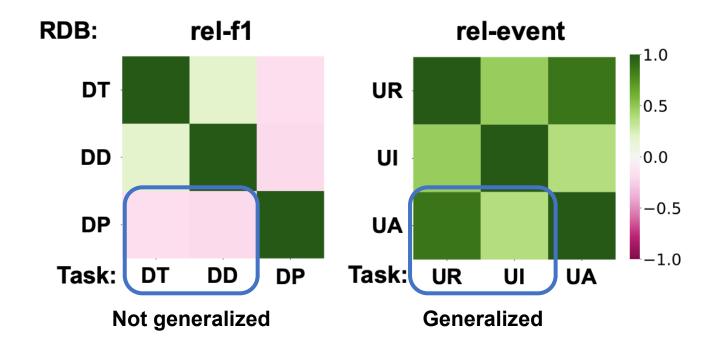


It depends on the task, even on the same RDB!

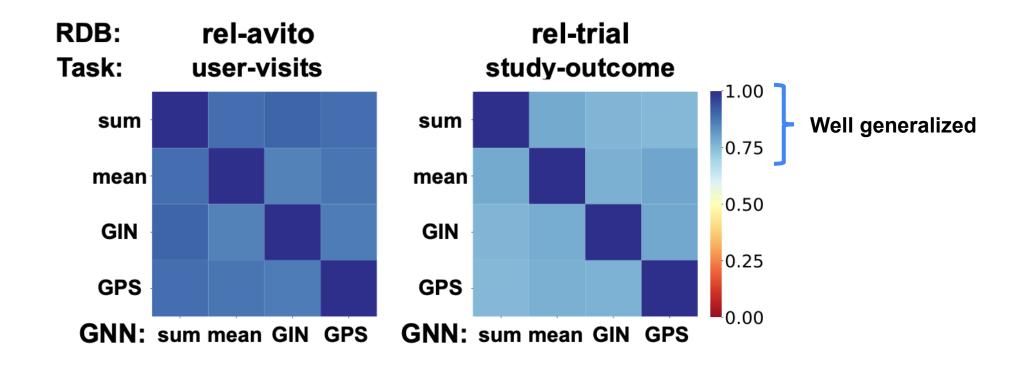
Observation 3. Top-performing graph models share common substructures.



 Observation 4. Different tasks may require different graph models, even on the same RDB.



 Observation 5. Effectiveness of graph models generalizes across predictive GNNs.

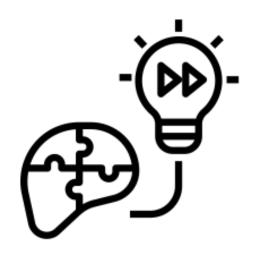


Roadmap

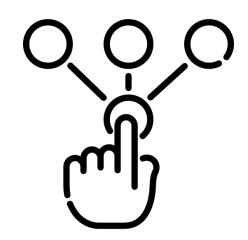
- Overview
- Dataset for RDB2G-Bench
- Benchmark for RDB2G-Bench
- Conclusions

Benchmark settings (cont.)

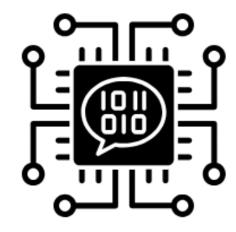
- We benchmark 10 RDB-to-Graph modeling methods.
 - Each method tries to find effective graph models under constrained budgets.



Heuristic-based (e.g., All-Rows-to-Nodes)



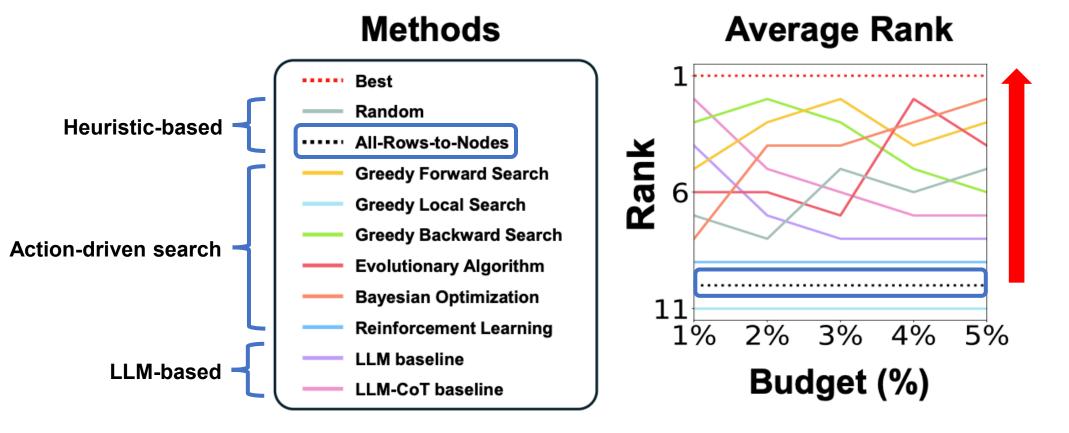
Action-based search (e.g., Greedy Search)



LLM-based (e.g., Chain-of-Thought)

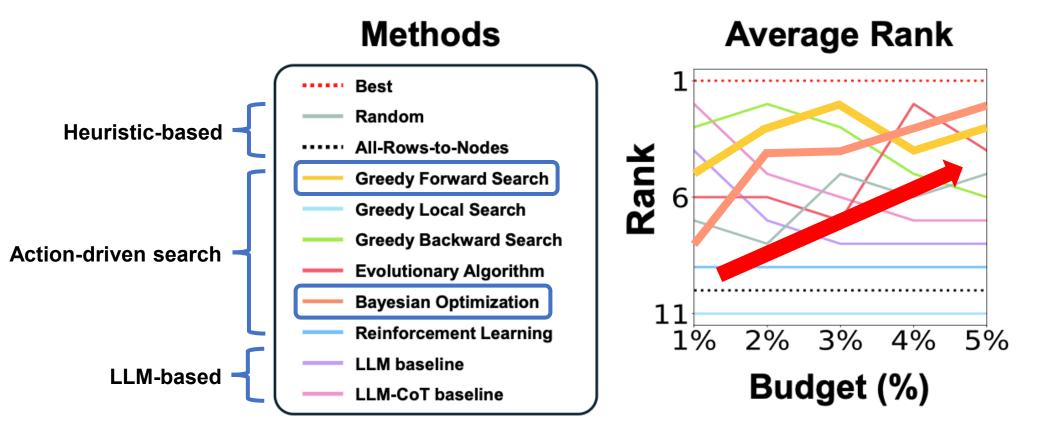
Benchmark results

 Result 1. Most baselines outperform a widely-adopted heuristic (All Rows to Nodes) with minimal explorations.



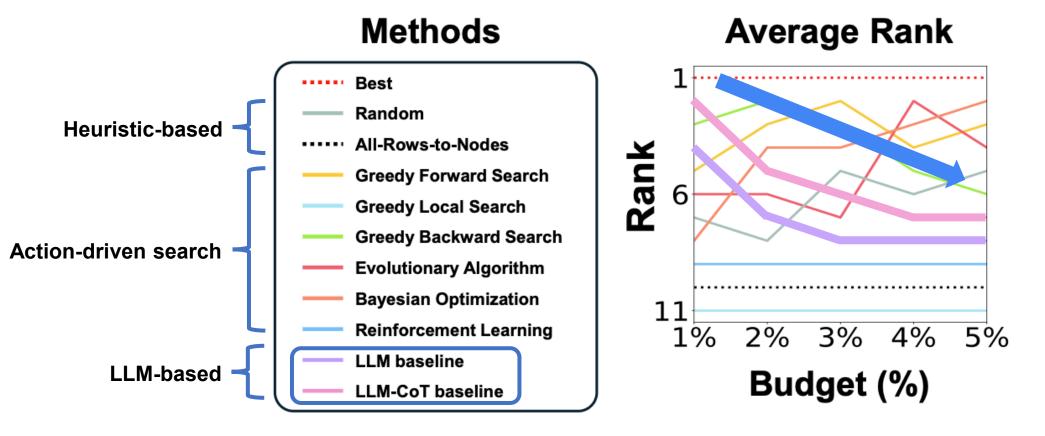
Benchmark results (cont.)

 Result 2. Value-based search algorithms, typically improve as performance feedback accumulates.



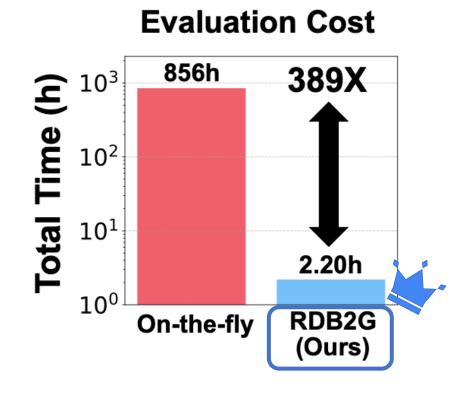
Benchmark results (cont.)

 Result 3. LLM baselines perform well under small budgets but struggles as the search space expands.



Benchmark results (cont.)

 Result 4. RDB2G-Bench enables evaluation up to 389x faster than onthe-flying results.



Roadmap

- Overview
- Dataset for RDB2G-Bench
- Benchmark for RDB2G-Bench
- Conclusions

Conclusions

Topic: The first benchmark for automatic RDB-to-Graph modeling

- Datasets: 50k precomputed graph models from 5 real-world RDBs.
- Benchmarks: Enables 380x faster evaluation of modeling methods.
- Observations: Provides practical insights for graph modeling.

RDB2G-Bench: A Comprehensive Benchmark for Automatic Graph Modeling of Relational Databases

Dongwon Choi

Sunwoo Kim

Juyeon Kim

Kyungho Kim

Geon Lee

Shinhwan Kang

Myunghwan Kim

Kijung Shin